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ABSTRACT

Hackney, Philip J. Ph.D., Purdue University, August 2010. Homology Operations in
the Spectral Sequence of a Cosimplicial Space. Major Professor: James E. McClure.

We construct operations in the homology spectral sequence of cosimplicial E-

infinity and cosimplicial E-n spaces. This is accomplished by constructing external

operations for certain universal examples which were introduced by Bousfield and

Kan. By universality we then have external operations for any cosimplicial space and

the E-n structure maps provide the internal operations. The main ingredient is a

detailed computation of the spectral sequence associated to the homotopy orbit of

the square of the Bousfield-Kan examples.
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1. INTRODUCTION

Let C be a fixed E∞ operad. The aim of this work is to prove the following Theorem

and its En analogue (Theorem 7.4.5).

Theorem 1.0.1. Suppose that X is a cosimplicial object in the category of C-spaces.

Then there are operations in the mod-2 homology spectral sequence associated to X:

Qm : Er
−s,t → Er

−s,m+t m ≥ t

Qm : Er
−s,t → Ew

m−s−t,2t m ∈ [t− s, t]

where w ∈ [r, 2r − 2] is given in Theorem 6.3.6.

The first proof of this was given by Jim Turner in [1]. We provide a fundamentally

different proof which is more direct and is amenable to generalization.

Pictorially, the images of these operations applied to an element in bidegree (−s, t)

lie on the dotted and solid lines of Figure 1.1.

−s−2s

2t

Figure 1.1. Vertical and Horizontal Operations

The scheme of the paper is as follows. We work with simple Bousfield-Kan uni-

versal examples, which one might think of as cosimplicial spheres. We construct
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external operations for these examples and use the universal property to transport

these operations into the spectral sequence for an arbitrary cosimplicial space. When

that cosimplicial space is actually a cosimplicial C-space, we then obtain internal

operations by combining the external operations with the C(2)-structure.

1.1 Homology Spectral Sequence and Passage to Chains

Let X be a cosimplicial space (where ‘space’ means either topological space or

simplicial set). We briefly outline the construction of the homology spectral sequence

associated to X (see [2] for more details).

Convention. We always work over the field k = Z/2 and just write Ch for the

category of chain complexes over k.

Let

S∗ : Spaces→ Ch

be the mod-2 chains functor. The first step in the construction of the spectral sequence

is to pass from X to the cosimplicial chain complex S∗(X).

If Y is a cosimplicial object in an abelian category A, we will write CY for the

conormalization of Y

CY p = coker
( p⊕
k=1

dk :
⊕

Y p−1 → Y p
)
,

which is an object in coCh≥0A, the category of nonnegative cochain complexes over

A. When A = Ch, the category of chain complexes over k, we will regard CY as a

left-plane bicomplex which consists of the k-module CY p
q in bidegree (−p, q). Given

a bicomplex B, we will let TB denote the product total complex:

TBm =
∏
j

Bj,m−j.

The appropriate filtration in this situation is the one by columns

F k
m =

∏
j≤k

Bj,m−j.
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We may regard

TC(Y ) ⊂
∏
m

Hom(∆m
∗ , Y

m),

where this is the internal Hom in the category Ch. The natural filtration of ∆∗ by

skeleta induces the above filtration on TC(Y ) (see [2]).

The homology spectral sequence associated to X is, by definition, the one obtained

for this filtration on TCS∗(X). For this reason we usually work with cosimplicial chain

complexes rather than cosimplicial spaces, though of course we will have to check that

various geometric constructions we make behave well when we pass to chains. This

will usually take the form of an E1 or E2 isomorphism between the algebraic and

geometric constructions.

1.2 External Operations

In this section we recall that the Dyer-Lashof operations are constructed by com-

bining an “external operation” with the C(2)-structure map. We will also use this to

give one construction of the vertical operations from Theorem 1.0.1.

Let W be the usual kπ-free resolution of ktriv, defined by

Wi =

kπ · ei i ≥ 0

0 i < 0

and

d(ei) = (1 + σ)ei−1.

Of course this is kπ chain-homotopic to S∗(Eπ), which, combined with the shuffle

map gives a quasi-isomorphism

W ⊗π (S∗(X)⊗ S∗(X))→ S∗(Eπ ×π (X ×X))

for any space X. If X is a C-space then C(2) is equivariantly homotopic to Eπ and

so there is a map

Eπ ×π (X ×X)→ X
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which induces

W ⊗π (S∗(X)⊗ S∗(X))→ S∗(X).

Let C be a chain complex. We define for each m a chain map of degree m

qm : C → W ⊗π (C ⊗ C)

c 7→ em−|c| ⊗ c⊗ c+ em+1−|c| ⊗ c⊗ dc

(interpreting terms with e−n as zero). If C is a chain complex equipped with a map

W ⊗π (C ⊗ C) → C (for example if C is chains on a C-space) then the image of [c]

under the composite

H∗(C)→ H∗(W ⊗π (C ⊗ C))→ H∗(C)

is, by definition, Qm[c]. For this reason we call the homology class

qm[c] ∈ H∗(W ⊗π (C ⊗ C))

an ‘external operation’.

Let’s go through the same procedure in the cosimplicial case which will end up

giving us the vertical operations. The tensor product of two cosimplicial chain com-

plexes A•∗ and B•∗ is the cosimplicial chain complex given in cosimplicial degree p by

Ap∗ ⊗Bp
∗ . If X is a cosimplicial C-space, then we have a map

W ⊗π (S∗(X)⊗ S∗(X))
E1 iso.−→ S∗(Eπ ×π (X ×X))→ S∗X,

so it useful to consider cosimplicial chain complexes Y equipped with a map

W ⊗π (Y ⊗ Y )→ Y. (1.1)

If Y is any cosimplicial chain complex then we have, for each m, a collection of maps

Y p → W ⊗π (Y p ⊗ Y p)

which constitute a (degree m) map of cosimplicial chain complexes

qm : Y → W ⊗π (Y ⊗ Y ).
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Combining this with (1.1) gives operations

Qm : Er(Y )
qm→ Er(W ⊗π (Y ⊗ Y ))→ Er(Y ).

Notice, though, that [y] ∈ Er
−s,t is mapped to something in bidegree (−s, t+m) and

to zero for m < t, so we only pick up the vertical part of Figure 1.1.

Henceforth, whenever we speak of external operations on a cosimplicial chain

complex Y we will mean operations whose target is the spectral sequence for W ⊗π
(Y ⊗ Y ). It will grow quite tedious to write

W ⊗π (Y ⊗ Y )

for the homotopy orbit complex, so instead we will usually abbreviate it as

E(Y ) = W ⊗π (Y ⊗ Y ).

Similarly, when discussing results related to cosimplicial (n+ 1)-fold loop spaces, we

will write

En(Y ) = sknW ⊗π (Y ⊗ Y ).

We will also overload this notation and write, for a cosimplicial space X,

E(X) = Eπ ×π (X ⊗X)

for the homotopy orbit cosimplicial space and

En(X) = Sn ×π (X ⊗X).

Remark (See Section 6.1). The class [y] is in total degree t−s, so we expect there to

be Dyer-Lashof operations in total degrees ≥ 2(t−s). The vertical operations begin in

total degree 2t−s, indicating that we have missed a few. There is one other operation

that we could reasonably talk about here, the one at the bottom left. Notice that if

Y comes equipped with a map W ⊗π (Y ⊗ Y )→ Y , then there is a multiplication on

the spectral sequence of Y . Since the bottom Dyer-Lashof operation of an element

is meant to be its square, it is compelling to notice that if [y] is in Er
−s,t then both

Qt−s[y] and [y]2 are in bidegree (−2s, 2t). This may convince the skeptical reader of

the validity of the shape of Figure 1.1.
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1.3 Bousfield-Kan Universal Examples

For each p, define Dp
(r,s,s) as the cokernel of

sks−1 ∆p
+ → sks+r−1 ∆p

+

in the category of simplicial based sets (here ∆p
+ is obtained by adding a disjoint

basepoint to the standard simplicial p-simplex). For t ≥ s, define Dp
(r,s,t) by iterating

the Kan suspension t− s times.

Dp
(r,s,t) = Σt−sDp

(r,s,s)

These cosimplicial spaces D•(r,s,t) were introduced in [3] where it was shown that the

(integral) homology spectral sequence has the form of Figure 1.2.

−s−(s+ r)

t

t+ r − 1

ı

δr(ı)

Figure 1.2. Spectral Sequence for D(r,s,t)

The Bousfield-Kan example D(r,s,t) is universal for elements in Er
−s,t of the ho-

mology spectral sequence. Indeed, for a cosimplicial simplicial abelian group B and

an element b ∈ Er
−s,t there is a map ZD(r,s,t) → B which, on the spectral sequence

level, sends ı to b. Slightly more general ideas can be found in [3], while slightly more

specific ideas can be found in section 2.2.

In any case, the spaces D(r,s,t) are the atomic cosimplicial spaces when it comes

to the homology spectral sequence. To understand external operations, we will first

understand them in these basic examples. We shall examine the spectral sequence

for the cosimplicial space Eπ ×π (D(r,s,t) ×D(r,s,t)).
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−s−2s

2t

Figure 1.3. E2(Eπ ×π (D(∞,s,t) ×D(∞,s,t)))

Part of the proof of Theorem 1.0.1 we present relies on a calculation giving the

extremely suggestive Figure 1.3 (or Figure 4.1 on page 35). A variation of this ap-

proach lets us replace W by its brutal truncation sknW in order to define operations

in the spectral sequence of a cosimplicial En+1-space.

1.4 Outline

In Chapter 2 we apply S∗ to D(r,s,t) and compute the spectral sequence. Much of

the notation used in later chapters is established here.

The next three chapters form the calculational heart of the work by providing a

complete description of the homology spectral sequence of E(D(r,s,t)). Chapter 3 is

devoted to the calculation of E1 and δ1. In Chapter 4 we calculate the homology of

two classes of chain complexes, which collectively give E2. Finally, in Chapter 5 we

compute E∞ and deduce the rest of the differentials.

In Chapter 6 we will define our operations. This isn’t entirely straightforward, as

the universal property of the Bousfield-Kan examples does not give a unique repre-

senting map. This is where the mysterious ‘w’ in Theorem 1.0.1 comes from.

Chapter 7 includes the remaining calculations needed to obtain operations in the

case of cosimplicial En+1 spaces.
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Throughout this work there will be variants of propositions and constructions

which will apply to the case of cosimplicial En+1-spaces for n finite. If one is only

interested in the infinite loop case, these may be safely skipped, so we have marked

them with a F. The first example of this is TheoremF3.1.2.



9

2. ALGEBRAIC BOUSFIELD-KAN EXAMPLES

In this chapter we give an explicit description of the mod-2 homology spectral se-

quence associated to the Bousfield-Kan universal examples.

We give two separate constructions of the E1 page of these spectral sequences. The

second, starting on page 14, gives a complete description of the spectral sequence and

allows us to establish the universal property for the Bousfield-Kan universal examples.

It is also relatively quick.

The first construction is more involved and only produces E1. This relies on the

observation (see [3, 3.1] or Appendix B) that, for a cosimplicial chain complex Y ,

C(Ht(Y ))p ∼= Ht(CY
p),

where the latter term is isomorphic to E1
−p,t(Y ). The method we use is to first

compute the levelwise homology Ht(Y
p) and then calculate the (higher) coface maps

Ht(d
1), Ht(d

2), . . . , Ht(d
p+1). This will tell us about the left-hand side of the above

isomorphism.

The advantage to presenting a construction along these lines is two-fold. First, it

provides good practice since we will use this method of calculation later to calculate

E(Y ). More importantly, the levelwise homology of Y gives information about the

levelwise homology of E(Y ) and En(Y ) (see section 3.1.1).

Most future calculations in this paper rely on the bases we choose here.

2.1 Homology of the Skeleton of the p-Simplex

Let ∆p denote the (normalized) simplicial chains for the standard simplicial model

of the p-simplex. A basis for ∆p in dimension k is given by the set of ordered injections

[k] ↪→ [p].
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For a complex C, write skt(C) for the brutal truncation with

skt(C)k =

Ck k ≤ t

0 k > t.

This notation is chosen because of its relation to the usual notion of simplicial skeleton:

if X is a simplicial set, then

skt S∗X = S∗ sktX,

where S∗ = N∗k is the normalized simplicial k-chains functor. Thus we wish to

compute skt ∆p, and since we always have

Hk(sktC) =


0 k > t

Zt(C) k = t

Hk(C) k < t

we are left to understand Zt(∆
p). If t > 0 then Zt(∆

p) = Bt(∆
p) and if t = 0 then

Zt(∆
p) is given by the collection of vertices k{[0] ↪→ [p]}. In summary,

Hk(skt ∆p) =



Bt(∆
p) k = t > 0

k{[0] ↪→ [p]} k = t = 0

k k = 0, t > k

0 else.

We now give an explicit description for Ht(skt ∆p) = Bt(∆
p) when t > 0.

Definition. We already have ∆p
r = k{[r] ↪→ [p]}. We’d like to consider the set of

based injections

Λp
r = { ε | ε : [r] ↪→ [p], ε(0) = 0 }.

The notation is chosen because this corresponds to the r-simplices of the 0-horn of

the p-simplex.
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Proposition 2.1.1. The restriction of the differential

d : ∆p
t+1 → ∆p

t

gives an isomorphism

kΛp
t+1

∼=→ Bt(∆
p).

Proof. We first show that the map is injective. Let V ⊂ ∆p
t have a basis consisting

of ε : [t] ↪→ [p] with ε(0) > 0, which is the complement of kΛp
t :

∆p
t = V ⊕ kΛp

t .

Notice that the map

d0 : kΛp
t+1 → ∆p

t

ε 7→ ε ◦ d0

is an injection. The following commutes

kΛp
t+1

d0 //

d
��

V

∆p
t V ⊕ kΛp

t

OO

so ker d ⊂ ker d0 = 0.

To show that d is surjective, fix a basis element ε : [t + 1] ↪→ [p] of ∆p
t+1. We

need to show that dε is in the image of d|kΛp
t+1. We treat the nontrivial case where

ε(0) > 0 and write ε = ε̄d0 with ε̄(0) = 0. Then

0 = ddε̄

= d

(
ε̄
t+2∑
l=0

dl

)

= d(ε) +
t+2∑
l=1

d(ε̄dl).

Thus we see that

d(ε) = d

t+2∑
l=1

ε̄ ◦ dl,

and of course ε̄dl(0) = 0 for l > 0.
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Proposition 2.1.2. The homology of the t-skeleton of the standard p-simplex is given

by

Hk(skt ∆p) ∼=



kΛp
t+1 k = t > 0

k{[0] ↪→ [p]} k = t = 0

k k = 0, t > k

0 else.

2.2 Homology Spectral Sequence of the Bousfield-Kan Examples

Fix r, s, t and define Dp = Dp
rss as the cokernel of the inclusion

sks−1 ∆p ↪→ sks+r−1 ∆p.

The cosimplicial structure of D• is induced from that of ∆•. It’s not hard to see that

Σt−sDrss
∼= N∗kD(r,s,t),

where D(r,s,t) is the cosimplicial space defined in [3, 5.1] and section 1.3 and N∗ is the

normalization functor k∆ → Ch(k).

Proposition 2.2.1. For s ≥ 0 and r ≥ 2, the homology of Dp
rss is given by

Hk(D
p
rss)
∼=


kΛp

s+r k = s+ r − 1

kΛp
s k = s

0 else.

Proof. There is a short exact sequence of complexes

0→ sks−1 ∆p → sks+r−1 ∆p → Dp → 0

and, when s 6= 1, the result follows immediately from the associated long exact

sequence and Proposition 2.1.2. When s = 1, the bottom map in the diagram

0 // H1D // H0 sk0
// H0 skr // H0D // 0

k{[0] ↪→ [p]} // k
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is surjective and kΛp
1 is a p-dimensional vector space.

Remark. The statement of this Proposition is not true for r < 2. We will assume

that r ≥ 2 until section 6.2, where we will momentarily need an easy calculation for

r = 1.

We now reproduce a the mod-2 version of [3, 5.3, (i)–(iii)] using Proposition 2.2.1.

Namely, we compute the E1 page of the spectral sequence of Drss. We do this using

the fact (from [3, 3.1]) that

E1
−p,q(Drss) = HqC(Drss)

p ∼= C(Hq(Drss))
p.

There isn’t an obvious way to obtain information about the differentials from this

isomorphism, so we will not prove [3, 5.3, (iv)] using this method. The answer is

given in Figure 2.1 (see also Figure 2.3).

−s−(s+ r)

t

t+ r − 1

Figure 2.1. Page 1 of Drst

We want to compute CHDrss (noting that CHDrst is obtained from this by sus-

pension). For j > 0, the coface map dj takes elements of Λp
t to elements of Λp+1

t (this
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is why I chose the 0-outer horn rather than n-outer horn: it’s compatible with the

convention I use for conormalization). Now if we look at the conormalization:

CH(Drss)
p
s = kΛp

s/
(
d1kΛp−1

s + · · ·+ dpkΛp−1
s

)
∼= k{ ε | ε : [s] ↪→ [p], ε(0) = 0, [1, p] ⊂ im ε }

= k{id[s]}

CH(Drss)
p
s+r−1

∼= kΛp
s+r/

(
d1kΛp−1

s+r + · · ·+ dpkΛp−1
s+r

)
∼= k{ ε | ε : [s+ r] ↪→ [p], ε(0) = 0, [1, p] ⊂ im ε }

= k{id[s+r]}

CH(Drss)
p
k = 0 k 6= s, s+ r − 1.

This is reflected in Figure 2.1. The separation of the two remaining classes means all

intervening differentials δ1, δ2, . . . , δr−1 must be zero, so E1 = E2 = · · · = Er.

Instead of using Proposition 2.2.1, we could conormalize Drss and get Figure 2.2.

The elements on the line with y-intercept 0 are id[s], . . . , id[s+r−1] and those on the line

with y-intercept −1 are d̄ id[s], . . . ,d̄ id[s+r−1]. One can calculate that d̄ id[k] = d id[k+1]

in C∆•.

−s

s
s+ 1

s+ r − 2
s+ r − 1

Figure 2.2. The Bicomplex C(Drss)

There is exactly one r-cycle in total degree 0, namely

ı =
s+r−1∑
k=s

id[k] .
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Clearly ∂ı = d̄ id[s+r−1] (or 0 if r = ∞). This tells us why Er+1Drss = 0 for r < ∞,

which we did not show using the first construction. Thus, the spectral sequence is as

in Figure 2.3.

−s−(s+ r)

t

t+ r − 1

ı

δr(ı)

Figure 2.3. Pages 2 through r of Drst

Proposition 2.2.2 (Universal Property). Let Y be a cosimplicial chain complex and

y ∈ Zr
−s,t(Y ). Then there is a map

Θy : Drst → Y

with

Er(Θy)(ı) = [y] Er(Θy)(d̄ id[s+r−1]) = δr[y].

We will be using the definition of Θy frequently.

Definition (Representing Map). Let

y ∈ Zr
−s,t(Y ) ⊂ F−sTC(Y )t−s

which we write as

y =
∞∑
k=0

ys+kt+k ypq ∈ C(Y )pq .

Define C(Θy) by

Σt−s id[s+k] 7→ ys+kt+k

Σt−sd̄ id[s+k] 7→ d̄ys+kt+k .

The following Proof will show that this is a map of bicomplexes, so C(Θy) gives Θy

by the Dold-Kan Theorem.
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Proof of Proposition 2.2.2. Since ∂y ∈ F−s−r we know that

d̄ys+kt+k = dys+k+1
t+k+1

for 0 ≤ k ≤ r − 2, which shows that C(Θy) is a map of bicomplexes. Furthermore,

C(Θy)ı =
r−1∑
k=0

ys+kt+k ∼r
∞∑
k=0

ys+kt+k = y

and

C(Θy)∂ı = d̄ys+r−1
t+r−1 .
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3. THE E1 PAGE

3.1 Additive Structure of the E1 Page

We are interested in the spectral sequence associated to the cosimplicial chain

complex E(Drst). Note that E(Drst) ∼= Σ2t−2sE(Drss) where the suspension is taken

levelwise, so it is enough to understand the spectral sequence for Y = E(Drss). Fol-

lowing [3, 3.1] (see proof in Appendix B), E1
−p is isomorphic to C(H∗Y )p.

Fix r and s; we now turn to computing C(H∗Y ) when Y = E(Drss).

3.1.1 Homology

To compute H∗(Y ), first notice that

H∗

(
E(Dp

rss)
)
∼= H∗

(
E(H∗(D

p
rss))

)
(see [4, Lemma 1.1(iii)]).

Once we have made this change, notice that, for a kπ-module M (such as H∗(D
p)⊗

H∗(D
p)), the complex W ⊗π M is just

· · ·M 1+σ−→M
1+σ−→M

1+σ−→M → 0.

Thus the homology is M/(1+σ) in the bottom dimension and ker(1+σ)/ im(1+σ) in

dimensions bigger than zero. If we are working with sknW⊗πM instead, then we also

get top dimensional homology ker(1+σ). With a little more work this gives [4, Lemma

1.3], which we now use.

We choose an order for the basis of H∗(D
p
rss) that we found in §2.2.

Definition (Total Order). Every injection ε : [m] ↪→ [p] is given by a unique de-

creasing sequence r1 > r2 > · · · > rp−m (namely, the complement of the image) with
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ε = dr1 . . . drp−m . For a fixed m we declare the order on injections to be given by the re-

verse dictionary order on their associated sequence. For example, d3d0 < d2d1 < d2d0

and d3d2 < d3d1. By Proposition 2.2.1, we then have an induced order on Hs+r−1(Dp)

and on Hs(D
p). We give H∗(D

p) an order by declaring that Hs(D
p) < Hs+r−1(Dp).

We apply [4, Lemma 1.3] with this totally ordered basis to see that the homology

of E(H∗(D
p)) has a basis given by the disjoint union of the following sets:

{ em ⊗ ε⊗ ε | ε ∈ Λp
s,m ∈ N }

{ em ⊗ γ ⊗ γ | γ ∈ Λp
s+r,m ∈ N }

{ e0 ⊗ ε⊗ ε′ | ε, ε′ ∈ Λp
s, ε < ε′ }

{ e0 ⊗ ε⊗ γ | ε ∈ Λp
s, γ ∈ Λp

s+r }

{ e0 ⊗ γ ⊗ γ′ | γ, γ′ ∈ Λp
s+r, γ < γ′ }

To understand what happens when we apply dk to one of these basis elements,

we must use the isomorphism from Proposition 2.2.1. Notice that for γ ∈ Λp
s+r, this

isomorphism is induced from d and, for k > 0, dkdγ = ddkγ. Thus we may use

dk : kΛp
s+r → kΛp+1

s+r for k > 0 without worry.

The coface maps

dk : E(H∗(D
p))→ E(H∗(D

p+1))

for k > 0 respect the basis above. One must check that dkε < dkε′ if ε < ε′. But this

is easy to see. We may reduce to the case where ε = dr1 . . . drt and ε′ = dv1 . . . dvt

with r1 > v1. We begin to rewrite dkε and dkε′ in the canonical form. If k > r1 then

dkdr1 · · · and dkdv1 · · · is already in the canonical form, and the order is preserved. If

k ∈ (v1, r1] then dkε = dr1+1dk · · · and kε′ = dkdv1 · · · but of course r1 + 1 > k so the

order is preserved. If k ≤ v1 then dkε = dr1+1 · · · and dkε′ = dv1+1 · · · but of course

r1 + 1 > v1 + 1.
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3.1.2 Conormalization

We just saw that dk, k > 0, sends basis elements in H∗(E(H∗(D
p))) to basis

elements in H∗(E(H∗(D
p+1))) via

em ⊗ ε⊗ ε′ 7→ em ⊗ dkε⊗ dkε′

ε, ε′ ∈ Λp
s ∪ Λp

s+r m ≥ 0.

Thus

CH∗

(
E(H∗(D

p))
)

has a basis consisting of elements of the original basis which are not in the image of

dk for k = 1, . . . , p. It is easy to identify such elements, which constitutes the proof

of the following theorem.

Theorem 3.1.1. Let r ≥ 2 and s ≥ 0. The E1 page of the spectral sequence for the

cosimplicial chain complex E(Drst) can be given a basis consisting of the following:

In cosimplicial degree −s and homological degree 2t and above, we have elements

em ⊗ id[s]⊗ id[s] ∈ E1
−s,2t+m

In cosimplicial degree −s− r and homological degree 2t+ 2r − 2 and above, we have

elements

em ⊗ id[s+r]⊗ id[s+r] ∈ E1
−s−r,2t+2r+m−2.

In addition, in homological degree 2t we have

e0 ⊗ ε⊗ ε′ ∈ E1
−p,2t

where ε < ε′ ∈ Λp
s and [p] = im ε ∪ im ε′. These live in cosimplicial degrees between

−s− 1 and −2s.

In homological degree 2t+ r − 1 we have

e0 ⊗ ε⊗ γ ∈ E1
−p,2t+r−1
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where ε ∈ Λp
s, γ ∈ Λp

s+r and [p] = im ε ∪ im γ. These live in cosimplicial degrees

between −s− r and −2s− r.

Finally, in homological degree 2t+ 2r − 2 we have

e0 ⊗ γ ⊗ γ′ ∈ E1
−p,2t+2r−2

where γ < γ′ ∈ Λp
s+r and [p] = im γ∪ im γ′. These live in cosimplicial degrees between

−s− r − 1 and −2s− 2r.

Proof. In the spectral sequence associated to E(Drss), E
1
−p has a basis given by the

disjoint union of the following sets:

{ em ⊗ ε⊗ ε | ε ∈ Λp
s, [1, p] ⊂ im ε,m ∈ N }

{ em ⊗ γ ⊗ γ | γ ∈ Λp
s+r, [1, p] ⊂ im γ,m ∈ N }

{ e0 ⊗ ε⊗ ε′ | ε, ε′ ∈ Λp
s, [1, p] ⊂ im ε ∪ im ε′, ε < ε′ }

{ e0 ⊗ ε⊗ γ | ε ∈ Λp
s, γ ∈ Λp

s+r, [1, p] ⊂ im ε ∪ im γ }

{ e0 ⊗ γ ⊗ γ′ | γ, γ′ ∈ Λp
s+r, [1, p] ⊂ im γ ∪ im γ′, γ < γ′ }

Apply the (2t− 2s)-fold suspension in the vertical direction to this basis.

A picture of the E1 page is given in Figure 3.1, where we have indicated modules

with rank greater than zero by snaky lines and modules of rank one with straight lines.

The reader is encouraged to compare this to the picture of E2 given in Figure 4.1 on

page 35.

−s−s− r−2s−2s− r−2s− 2r

2t

2t+ r − 1

2t+ 2r − 2

Figure 3.1. E1(E(Drst))
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We can also use [4, Lemma 1.3] to compute the homology of each of the columns

when we work with the truncation of W rather than the full thing. Appropriate

changes to Figure 4.2 on Page 36 will reveal the locations of the bigraded sets in the

following:

TheoremF 3.1.2. The E1 page of the spectral sequence associated to En(Drst) has a

basis consisting of bigraded sets

C̃, C̃d, B̃, B̃d, T̃, T̃d, M̃1, and M̃2.

(column, bottom, top, middle) We give an exhaustive list of their elements. For

m ∈ [0, n], we have

em ⊗ id[s]⊗ id[s] ∈ C̃−s,2t+m

em ⊗ id[s+r]⊗ id[s+r] ∈ (C̃d)−s−r,2t+2r+m−2.

For each pair ε < ε′ ∈ Λp
s and [p] = im ε ∪ im ε′ we have

e0 ⊗ ε⊗ ε′ ∈ B̃−p,2t

(1 + σ)en ⊗ ε⊗ ε′ ∈ T̃−p,2t+n

Here −p is between −s− 1 and −2s.

For ε ∈ Λp
s, γ ∈ Λp

s+r and [p] = im ε ∪ im γ, we have

e0 ⊗ ε⊗ γ ∈ (M̃1)−p,2t+r−1

(1 + σ)en ⊗ ε⊗ γ ∈ (M̃2)−p,2t+r+n−1

which live in degrees with −p between −s− r and −2s− r.

For γ < γ′ ∈ Λp
s+r and [p] = im γ ∪ im γ′ we have

e0 ⊗ γ ⊗ γ′ ∈ (B̃d)−p,2t+2r−2

(1 + σ)en ⊗ γ ⊗ γ′ ∈ (T̃d)−p,2t+2r+n−2

with −p between −s− r − 1 and −2s− 2r.

Proof. Conormalize H(En(Drst)) as above.
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3.2 The Differential δ1

In Theorem 3.1.1 we gave a basis for the E1 page of the spectral sequence of

E(Drst). We now apply the cosimplicial differential d̄ to each of these basis elements.

Notice that since the basis for the E1 page is made up of based maps, application

of d̄ = d0 never produces the basis elements given by Theorem 3.1.1. As Figure 3.1

indicates, only E1-basis elements of the form e0⊗ ζ ⊗ ζ ′ may have nontrivial δ1. This

section is devoted to expressing the d-homology class of d̄(e0⊗ ζ ⊗ ζ ′) in terms of the

basis elements of that Theorem.

Calculation of the spectral sequence does not require explicit calculation of δ1.

We include it here only for completeness.

Notation. Let S ⊂ [p] be a set of q+1 elements. Define ζp(S) ∈ ∆p
q to be the unique

ordered injection whose image is S. In other words, if [p] − S = {rp−q > · · · > r1}

then

ζp(S) = drp−q · · · dr1 : [q]→ [p].

Theorem 3.2.1. Let S, T ⊂ [p] with |S|, |T | ∈ {s + 1, s + r + 1}, S ∪ T = [p], and

0 ∈ S ∩ T . Then in E1(E(Drst)) we have

δ1[e0 ⊗ ζp(S)⊗ ζp(T )]

=
∑

j,k∈S∩T+1
j 6=k

[e0 ⊗ ζp+1((S + 1) ∪ {0} − {k})⊗ ζp+1((T + 1) ∪ {0} − {j})].

Note that we stated the hypotheses in terms of subsets of [p]. If we instead consider

injections ε and ε′ with im ε = S and im ε′ = T then the conditions on S and T are

equivalent to ε, ε′ ∈ Λp
s and e0 ⊗ ε⊗ ε′ 6= 0 in C(E(D)).

This formula also holds in E1(En(Drst)) and, furthermore, we have

TheoremF 3.2.2. Let S, T be as in Theorem 3.2.1. Then in E1(En(Drst)) we have

δ1[(1 + σ)en ⊗ ζp(S)⊗ ζp(T )]

=
∑

j,k∈S∩T+1
j 6=k

[(1 + σ)en ⊗ ζp+1((S + 1) ∪ {0} − {k})⊗ ζp+1((T + 1) ∪ {0} − {j})].
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This covers all differentials of elements in T̃, M̃2, and T̃d. We also have the elements

[en ⊗ id⊗ id] in C̃ and C̃d to deal with:

δ1[en ⊗ id⊗ id] =
∑

0<j<l

[
(1 + σ)en ⊗ dj ⊗ dl

]
.

The remainder of this section is devoted to the proof of Theorem 3.2.1 and

TheoremF3.2.2.

The proof of Proposition 2.2.1 actually shows the following:

Lemma 3.2.3. The map sks+r−1 ∆ → Drss induces an isomorphism of cosimplicial

modules

Hs+r−1(sks+r−1 ∆)→ Hs+r−1(Drss).

For s > 1, the boundary map induces an isomorphism of cosimplicial modules

Hs(Drss)→ Hs−1(sks−1 ∆).

For s = 1 the map above H1(D)→ H0(sk0 ∆) is an inclusion of cosimplicial modules.

The ‘ζ’-notation makes it easy to write down d without worrying about the specific

expression in terms of the dk. We have, in Dp
rss,

d(ζp(S)) =


∑

k∈S ζ
p(S − {k}) |S| ∈ [s+ 1, s+ r − 1]

0 else.

(3.1)

We can use this, as in the proof of surjectivity in Proposition 2.1.1, to show that

dζp(U) =
∑
k∈U

dζp(U ∪ {0} − {k})

in ∆ when 0 /∈ U . Another elementary observation is that

d0ζp(S) = ζp+1(S + 1).

Taking U = S + 1 these say

d0dζp(S) = dd0ζp(S) = dζp+1(S + 1) =
∑
k∈S+1

dζp+1((S + 1) ∪ {0} − {k}).
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Proposition 3.2.4. Suppose that 0 ∈ S ⊂ [p] and either |S| = s + 1 ≥ 2 or |S| =

s+ r + 1. Then the following formula holds in H∗(Drss):

d0(ζp(S)) =
∑
k∈S+1

ζp+1((S + 1) ∪ {0} − {k}).

Proof. We just saw that d0dζp(S) =
∑

k∈S+1 dζ
p+1((S + 1) ∪ {0} − {k}) in ∆, so the

result follows from Lemma 3.2.3.

When S and T satisfy the conditions of this proposition, then, in E1(E(Drst)) =

CH∗(E(Drst)),

δ1[e0 ⊗ ζp(S)⊗ ζp(T )] = [e0 ⊗ d0ζp(S)⊗ ζp(T )]

=
∑
k∈S+1

∑
j∈T+1

[e0 ⊗ ζp+1((S + 1) ∪ {0} − {k})⊗ ζp+1((T + 1) ∪ {0} − {j})].

Since we are working in the conormalization, if k − 1 ∈ S − T , j − 1 ∈ T − S, or

k = j, then the term

[e0 ⊗ ζp+1((S + 1) ∪ {0} − {k})⊗ ζp+1((T + 1) ∪ {0} − {j})]

is zero. This establishes the theorem in the cases where |S|, |T | ≥ 2.

Remark. The preceding paragraph works if ‘e0’ is replaced by ‘(1 + σ)en’.

The remaining case, namely s = 0 with |S| = 1, is trivial. Notice that, for

both |T | = 1 and |T | = r + 1, the theorem statement reduces to the fact that

δ1(e0 ⊗ ζp{0} ⊗ ζp(T )) = 0. This is obvious because the target module for δ1 is zero

(see figure 3.1).

Proof of TheoremF3.2.2. Since the above arguments work when we replace e0 by

(1 + σ)en, we need only to calculate

δ1[en ⊗ id[s′]⊗ id[s′]] = en ⊗ d0 ⊗ d0,

where s′ = s or s+ r − 1. For s′ > 0, we apply Proposition 3.2.4 to see that

en ⊗ ζs
′+1([s′ + 1]− {0})⊗ ζs′+1([s′ + 1]− {0})

= en ⊗
∑

1≤j≤s′+1

ζs
′+1([s′ + 1]− {j})⊗

∑
1≤l≤s′+1

ζs
′+1([s′ + 1]− {l}).
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As above, this is equal to∑
1≤j,l≤s′+1

j 6=l

en⊗ ζs
′+1([s′+ 1]−{j})⊗ ζs′+1([s′+ 1]−{l}) =

∑
1≤j<l≤s+1

(1 +σ)en⊗ dj ⊗ dl.

If s = 0, then

δ1[en ⊗ id[0]⊗ id[0]] = 0

for bidegree reasons (since T̃ = ∅) by TheoremF3.1.2.
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4. THE E2 PAGE

The goal of this chapter is to compute the E2 page of the spectral sequence associated

to E(Drst).

We begin with some generalities on the tensor product of two cosimplicial chain

complexes which we will need in section 4.2 and at various points in the rest of the

paper.

The E1 page of the spectral sequence above contains three ‘horizontal strips’

[−2s,−s]×{2t}, [−2s−r,−s−r]×{2t+r−1}, and [−2s−2r,−s−r]×{2t+2r−2}

(if r = ∞ we only have the first of these) which are the only places where δ1 may

be nonzero. We introduce a slightly more general class of complexes in section 4.2

(basically including the r = 0 and r = 1 cases of the middle horizontal strip) to facili-

tate this computation, and quickly compute the cohomology of the middle horizontal

strip. Then, in section 4.3 we compute the cohomology of the top and bottom strips.

4.1 Spectral Sequence of X ⊗ Y

In this section we examine the spectral sequence associated to the tensor prod-

uct of two cosimplicial chain complexes, anticipating applications in chapter 4 and

section 6.1.

Let X and Y be cosimplicial chain complexes. There are two bicomplexes, C(X)⊗

C(Y ) and C(X ⊗ Y ), which are readily associated to the pair. We now give natural

transformations

C(X)⊗ C(Y )� C(X ⊗ Y ).

Definition. The Alexander-Whitney map AW (see [5, p. 217] or [3, p. 316]) is

defined on C(X)p ⊗ C(Y )q by

AW (xp ⊗ yq) = dp+q · · · dp+1x⊗ dp−1 · · · d0y.
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The shuffle map ∇ is defined on C(X ⊗ Y )n by

∇(xn ⊗ yn) =
∑
p+q=n

∑
(p,q)−shuffles

τ

sτ(p) · · · sτ(p+q−1)x⊗ sτ(0) · · · sτ(p−1)y

where we consider (p, q)-shuffles as permutations of the set

{0, 1, . . . , p+ q − 1}.

Lemma 4.1.1. The Alexander-Whitney map and shuffle map are maps of bicom-

plexes.

Notice that C(X)⊗ C(Y ) is a retraction of C(X ⊗ Y ):

∇ ◦ AW = idC(X)⊗C(Y ) .

Furthermore, if X and Y are cosimplicial abelian groups, the dual Eilenberg-Zilber

theorem (see, for example, the appendix in [6]) tells us that ∇ and AW are inverse

chain homotopy equivalences. In the case when X and Y are cosimplicial chain

complexes, we can extend this to show that these maps give isomorphisms on E2

(Proposition 4.1.2).

Before we begin, suppose that B and B′ are bicomplexes (over k), and examine

the spectral sequences (obtained by filtering by columns) for Er(B), Er(B′), and

Er(B ⊗B′). Here the tensor product

(B ⊗B′)p,q =
⊕
i,j

Bi,j ⊗B′p−i,q−j

is again a bicomplex. Iterated application of the Künneth isomorphism gives an

isomorphism

ErB ⊗ ErB′ = H(Er−1B)⊗H(Er−1B′)
∼=→ H(Er−1(B ⊗B′)) = Er(B ⊗B′)

with the base case coming from E0B ⊗ E0B′ = B ⊗ B′ = E0(B ⊗ B′). We will

generally wish to identify

ErB ⊗ ErB′ = Er(B ⊗B′).
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Proposition 4.1.2. Let X and Y be cosimplicial chain complexes. The Alexander-

Whitney map

C(X)⊗ C(Y )→ C(X ⊗ Y )

induces an isomorphism

Er(X)⊗ Er(Y )
∼=→ Er(X ⊗ Y )

for all r ≥ 2. The inverse is induced from the shuffle map ∇.

Proof. Given what came before, we really want to show that the map of bicomplexes

C(X) ⊗ C(Y ) → C(X ⊗ Y ) induces a an isomorphism on page 2 of the associated

spectral sequence:

E2(C(X)⊗ C(Y ))
∼=→ E2(C(X ⊗ Y )).

Consider the diagram

CH∗(X)⊗ CH∗(Y ) AW // C[H∗(X)⊗H∗(Y )]
∼= // CH∗(X ⊗ Y )

H∗C(X)⊗H∗C(Y )
∼= // H∗[C(X)⊗ C(Y )]

H∗AW // H∗C(X ⊗ Y )

where the isomorphisms come from the Künneth theorem. It is easy to see that

this commutes when we consider CH∗(X) = H∗C(X) as a subobject of H∗(X) as in

Appendix B.The dual Eilenberg-Zilber theorem implies that the top left map AW

becomes an isomorphism when we take homology in the horizontal direction. Then

too H∗AW is a quasi-isomorphism, implying that the composite

E2(X)⊗ E2(Y )
∼=→ E2(C(X)⊗ C(Y ))

E2(AW )−→ E2(X ⊗ Y )

is an isomorphism.

Since ∇AW = id, the inverse map must be the one induced from ∇.

Remark. One consequence of this proposition is that although

AW : C(Y )⊗ C(Y )→ C(Y ⊗ Y )

is not π-equivariant, it becomes so on E2 (see [3, Theorem 9.3(vii)]). This is because

at the level of bicomplexes ∇ is π-equivariant:

AWσ = AWσ id = AWσ(∇AW ) = AW (∇σ)AW ∼2 idσAW = σAW.
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4.2 Isolation of the Rows

Fix s and s′ nonnegative integers and let Ω = Ωs,s′ be the cochain complex

Ωs,s′ = C(Hs(D∞ss)⊗Hs′(D∞s′s′)).

When s = s′, Ωs,s has an obvious π-action and we define

Ω̄s = Ωs,s/π.

We know from Proposition 2.2.1 that a basis for Hs(D∞ss) is given by Λp
s. Let

ωp = ωps,s′ ⊂ Λp
s × Λp

s′

be the set of pairs (ζ, ζ ′) with [p] = im ζ ∪ im ζ ′. Following the ideas of section 3.1.2,

ωps,s′ is a basis for Ωp
s,s′ .

Remark. Observe that ωp is nonempty exactly when p ∈ [max(s, s′), s+ s′].

Proposition 4.2.1. Fix r, s, t, and consider the spectral sequence for E(Drst). There

isomorphisms of complexes

ψbot :Ω̄p
s → E1

−p,2t

ψmid :Ωp
s,s+r → E1

−p,2t+r−1

ψtop :Ω̄p
s+r → E1

−p,2t+2r−2

Proof. Assume t = s. We have isomorphisms of cosimplicial modules

(Hs(Drss)⊗Hs(Drss))/π → H2s(E(H∗(Drss)))

Hs(Drss)⊗Hs+r−1(Drss)→ H2s+r−1(E(H∗(Drss)))

(Hs+r−1(Drss)⊗Hs+r−1(Drss))/π → H2s+2r−2(E(H∗(Drss)))

each given by ζ ⊗ ζ ′ 7→ e0⊗ ζ ⊗ ζ ′. Applying C to the modules on the right gives the

nontrivial rows of E1.
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We now identify the left hand side in the above isomorphisms. The inclusion

Drss → D∞ss induces an isomorphism Hs(Drss)
∼=→ Hs(D∞ss). Lemma 3.2.3 gives

Hs+r(D∞,s+r,s+r) ∂

∼= // Hs+r−1(sks+r−1 ∆)
∼= // Hs+r−1(Drss).

Combined, these give isomorphisms

Ω̄s → C((Hs(Drss)⊗Hs(Drss))/π)

Ωs,s+r → C(Hs(Drss)⊗Hs+r−1(Drss))

Ω̄s+r,s+r → C((Hs+r−1(Drss)⊗Hs+r−1(Drss))/π).

Theorem 4.2.2. The cohomology of Ωs,s′ is

HnΩs,s′ =

k n = s+ s′

0 otherwise.

Proof. Notice that H∗D∞ss is concentrated in degree s by Proposition 2.2.1. So

H∗Ωs,s′ = H∗C(H∗D∞ss ⊗H∗D∞s′s′)

= E2(H∗D∞ss ⊗H∗D∞s′s′)

∼= E2(H∗D∞ss)⊗ E2(H∗D∞s′s′)

where the last isomorphism is by Proposition 4.1.2. The result follows from the

computation of E1(D∞ss) in section 2.2.

4.3 Cohomology of Ω̄

Fix s ≥ 0. In this section we employ the short exact sequence

0→ A→ Ωs,s → Ω̄s → 0

in order to compute the cohomology of Ω̄s. We begin by identifying the complex A

and studying its cohomology.
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Observe that for p > s, if (ζ, ζ ′) ∈ ωps,s then σ(ζ, ζ ′) 6= (ζ, ζ ′). Thus Ωp
s,s is a free

kπ-module for p > s, so

ker(Ωp
s,s → Ω̄p

s) = Ap = (1 + σ)Ωp
s,s.

Furthermore, ωss,s = {(id[s], id[s])}, so As = 0.

We have now identified A as the image of the map

Ωs,s
1+σ−→ Ωs,s.

The kernel of this map,

Υ = Υs = ker(1 + σ : Ωs,s → A)

will be of independent interest (see PropositionF4.3.3). For now, notice that Υp =

(1 + σ)Ωp = Ap for p > s since Ωp is kπ-free. This implies that

HpΥ = HpA p ≥ s+ 2.

Proposition 4.3.1. Fix s ≥ 0. We have

Hp(A) =

k p ∈ [s+ 1, 2s], s > 0

0 else

Hp(Υs) =


k p ∈ [s+ 2, 2s], s > 1

k p = 0 = s

0 else.

Proof. We use the long exact cohomology sequence associated to the short exact

sequence

0→ Υ→ Ω→ A→ 0

as well as Theorem 4.2.2, which says that H2sΩ = k and HpΩ = 0 for p 6= 2s.

Suppose that s ≥ 2. Examine the exact sequence

0 // H2s−1A // H2sΥ // H2sΩ // H2sA // 0

k
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We show that H2sΥ → H2sΩ is zero. If H2sΥ → H2sΩ were nonzero, then 0 =

H2sA = H2sΥ, which would also imply that H2sΩ = 0. This contradicts Theo-

rem 4.2.2. Thus we have k = H2sΩ = H2sA, and H2s−1A → H2sΥ = k is an

isomorphism. For p < 2s, we have that

0→ Hp−1A→ HpΥ→ 0

is exact, so for s+ 2 ≤ p < 2s we have

Hp−1A = HpΥ = HpA = k.

To finish this case, notice that Ap−1 = 0 for p − 1 ≤ s, so 0 = Hp−1A = HpΥ for

p ≤ s+ 1.

If s = 1, then Ap = 0 for p 6= 2 and A2 6= 0, so exactness of

0 // H2Υ // H2Ω // H2A // 0

k A2

implies H2Υ = 0 and H2A = k.

If s = 0 then A = 0, so Υ = Ω and the result is obvious.

Theorem 4.3.2. The cohomology of Ω̄s is

HnΩ̄s =

k n ∈ [s, 2s]

0 otherwise.

Proof. We use the exact sequence

0→ A→ Ω→ Ω̄→ 0,

Theorem 4.2.2, and Proposition 4.3.1. Notice immediately that H i−1Ω̄ ∼= H iA for

i < 2s, so we are reduced to analyzing the exact sequence

0→ H2s−1Ω̄→ H2sA→ H2sΩ→ H2sΩ̄→ 0.
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We merely need to show that H2sA→ H2sΩ is always zero. When s ≥ 2, we saw at

the beginning of the proof of Proposition 4.3.1 that H2sA = H2sΥ → H2sΩ is zero.

If s = 1, and α ∈ A2 = Υ2 is a cycle, then α is a boundary in Υ since H2Υ1 = 0,

hence α is a boundary in H2(Ω). Finally, H0A→ H0Ω0,0 is trivially zero since A = 0

when s = 0.

We briefly mention the truncation case. Proposition 4.2.1 gives isomorphisms of

complexes

Ω̄∗s →
(
k(B̃ t C̃−s,2t), δ

1
)

Ω∗s,s+r →
(
k(M̃1), δ1

)
Ω̄∗s+r →

(
k(B̃d t (C̃d)−s−r,2t+2r−2), δ1

)

For the remaining three rows, we see

PropositionF 4.3.3. There are isomorphisms of complexes

Υ∗s →
(
k(T̃ t C̃−s,2t+n), δ1

)
Ω∗s,s+r →

(
k(M̃2), δ1

)
Υ∗s+r →

(
k(T̃d t (C̃d)−s−r,2t+2r+n−2), δ1

)

Proof. The map

Hs(Drss)⊗Hs+r−1(Drss)→ H∗(En(H∗(Drss)))

ε⊗ γ′ 7→ (1 + σ)en ⊗ ε⊗ γ′

induces the middle isomorphism, as in the proof of Proposition 4.2.1. Furthermore,

if M• is one of the cosimplicial modules

Hs(Drss)⊗Hs(Drss) or Hs+r−1(Drss)⊗Hs+r−1(Drss),
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then we have a cosimplicial map

ker(1 + σ : M →M)→ H∗(En(H∗(Drss)))

ζ ⊗ ζ ′ 7→ en ⊗ ζ ⊗ ζ ′.

This is an inclusion by [4, Lemma 1.3], and of course remains so after conormalizing.

Finally, it is easy to see that the conormalized map

Υ→ E1(En(H∗(Drss)))

has the appropriate image.

4.4 The E2 page

We now record the E2 page of the spectral sequence. See Figure 4.1.

−s−s− r−2s−2s− r−2s− 2r

2t

2t+ r − 1

2t+ 2r − 2

Figure 4.1. E2(E(Drst))

Theorem 4.4.1. For r ∈ [2,∞), the E2 page of the spectral sequence for E(Drst)

consists of k in the following ranges of bidegrees

{−s} × [2t,∞)

{−s− r} × [2t+ 2r − 2,∞)

[−2s,−s− 1]× {2t}

{−2s− r} × {2t+ r − 1}

[−2s− 2r,−s− r − 1]× {2t+ 2r − 2}
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and zero elsewhere.

Proof. Theorem 3.1.1 gives the E1 page. The structure of that page gives the ranges

{−s} × (2t,∞) and {−s− r} × (2t+ 2r − 2,∞). Theorems 4.2.2 and 4.3.2 combine

with Proposition 4.2.1 to give the rest.

There are three possible pictures of E2(En(Drst)) in the truncated case, corre-

sponding to n > 2r − 2, n = 2r − 2, and n < 2r − 2. We give the first of these

in Figure 4.2, and encourage the reader to draw pictures for the other cases (using

TheoremF4.4.2).

−s−s− r−2s−2s− r−2s− 2r

2t

2t+ 2r − 2

2t+ n

Figure 4.2. E2(En(Drst)) for n > 2r − 2

TheoremF 4.4.2. Suppose s > 0. Then a basis for E2(En(Drst)) is given by the

union of the bigraded sets C,Cd,B,Bd,T,Td,M1, and M2, each of which consists of

a single element in each of the indicated bidegrees:

C :{−s} × [2t, 2t+ n− 1] Cd :{−s− r} × [2t+ 2r − 2, 2t+ 2r + n− 3]

B :[−2s,−s− 1]× {2t} Bd :[−2s− 2r,−s− r − 1]× {2t+ 2r − 2}

T :[−2s,−s− 2]× {2t+ n} Td :[−2s− 2r,−s− r − 2]× {2t+ 2r + n− 2}

M1 :{(−2s− r, 2t+ r − 1)} M2 :{(−2s− r, 2t+ n+ r − 1)}

If s = 0 then the statement is the same except that C is also nonempty in bidegree

(−s, 2t+ n) (and of course B = ∅ = T).
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Proof. Ignoring the vertical grading, (E1, δ1) is the direct sum of the complexes(
k(B̃ t C̃−s,2t), δ

1
) (

k(B̃d t (C̃d)−s−r,2t+2r−2), δ1
)

(
k(T̃ t C̃−s,2t+n), δ1

) (
k(T̃d t (C̃d)−s−r,2t+2r+n−2), δ1

)
n−1⊕
i=1

(kC̃−s,2t+i, 0)
n−1⊕
i=1

(kC̃d−s−r,2t+2r−2+i, 0)(
kM̃1, δ

1
) (

kM̃2, δ
1
)
.

Now combine PropositionF4.3.3 with Proposition 4.3.1.
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5. PAGES E3 THROUGH E∞

In this chapter we complete the calculation of the spectral sequence associated to

E(Drst). We begin with the easiest case – namely when r =∞. Section 5.2 is devoted

to algebraic convergence results. We will show that TE∞(E(Drst)) = HTC(E(Drst)).

5.1 The Case r =∞

We are now able to compute the spectral sequence for E(D∞st). Proofs and state-

ments above are generally made for finite r, but if the appropriate changes are made

in §2.2 then we will end up with a variant of Theorem 3.1.1 which says

Proposition 5.1.1. All bidegrees of E1(E(D∞st)) are zero except for the following:

In cosimplicial degree −s and homological degree 2t and above, we have elements

em ⊗ id[s]⊗ id[s] ∈ E1
−s,2t+m.

In homological degree 2t we have

e0 ⊗ ε⊗ ε′ ∈ E1
−p,2t

where ε < ε′ ∈ Λp
s and [p] = im ε ∪ im ε′, which of course live in cosimplicial degree

between −2s and −s− 1.

The same argument as for Theorem 4.4.1 then gives

Theorem 5.1.2. The E2 page of E(D∞st) consists of k in the following bidegrees

{−s} × [2t,∞)

[−2s,−s− 1]× {2t}

and zero elsewhere.
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The structure of the E2 page implies that all further differentials are zero, so

E∞−p,q =


k q = 2t and − p ∈ [−2s,−s]

k p = s and q ≥ 2t

0 else.

The following TheoremF can be visualized in Figure 5.1.

−s−2s

2t

2t+ n

Figure 5.1. E2(En(D∞st))

TheoremF 5.1.3. In the spectral sequence for En(D∞st), E2 has a basis consisting

of the sets C,B,T (as in TheoremF4.4.2), or just C if s = 0.

Remark. E2 6= E∞ when n < ∞ and s > 0. There should only be n + 1 terms on

E∞, but E2 has 2s+n− 2 nonzero classes. We will compute the differentials in §7.1.

5.2 Algebraic Convergence

We are interested in bicomplexes arising as the conormalization of a cosimplicial

chain complex, all of which are left-plane spectral sequences (the module Bp
q lies at

the (−p, q) lattice point). According to [7, p.142] the filtration we have defined above

is complete and exhaustive.

In what follows, B is one of C(D∞st ⊗D∞st), or C(En(D∞st)), where n <∞.

Consider the short exact sequence of complexes

0→ F−p/F−p−1 → T (B)/F−p−1 → T (B)/F−p → 0.
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For each of these examples we will show (Lemmas 5.2.1 and 5.2.2) that

Hm(F−p/F−p−1) = 0

for large p. This implies, of course, that

Hm

(
T (B)/F−p−1

)
→ Hm

(
T (B)/F−p

)
is an isomorphism for large p, so by Mittag-Leffler

lim←−
p

1Hm

(
T (B)/F−p

)
= 0.

We then have the short exact sequence (see [7, p.142 and 5.5.5])

0→ lim←−
p

1Hm+1

(
T (B)/F−p

)
→ Hm(T (B))→ lim←−

p

Hm

(
T (B)/F−p

)
→ 0

which implies

Hm(T (B)) = lim←−
p

Hm

(
T (B)/F−p

)
for all m.

As a first example consider

Lemma 5.2.1. Let B = C(D∞st ⊗D∞st). Then

HmF
−p/F−p−1 = 0

for p 6= 2t−m.

Proof. The Künneth Theorem gives

H∗(D
p ⊗Dp) = H∗(D

p)⊗H∗(Dp)

which, by Proposition 2.2.1, is only nonzero for ∗ = 2t. Then

HmF
−p/F−p−1 = Hm+pC(D ⊗D)p

= CHm+p(D ⊗D)p

= 0 for m+ p 6= 2t
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This is subsumed by the following Lemma:

Lemma 5.2.2. Let B = C(En(Drst)) for 2 ≤ r ≤ ∞ and n ≤ ∞. If r < ∞ let

j = 2s+ 2r and if r =∞ let j = 2s. Then

Hm(F−p/F−p−1) = 0

for p > j.

Proof. This is a straightforward computation using Theorem 3.1.1 (see figure on

page 35) or TheoremF3.1.2 (figure on page 36) in the case r is finite and Propo-

sition 5.1.1 or its truncated variant (figure on page 40) in the case r =∞.

HmF
−p/F−p−1 = Hm+pC(En(D∞st))

p

= CHm+p(En(D∞st))
p

= 0 for p > j

We also have regularity of the spectral sequence since each group E1
−s,t is a finite

k-module.

Theorem 5.2.3. Let 2 ≤ r ≤ ∞ and 0 ≤ n ≤ ∞. Then

H∗TC(En(Drst)) ∼= TE∞(En(Drst)).

Proof. This follows from Lemma 5.2.2 and regularity.

5.3 E∞ = 0 when r <∞

Let D = Drss for r <∞. The goal of this section is contained in its title: we wish

to show that

E∞(E(D)) = 0.

Lemma 5.3.1. If r is finite, then the bicomplex C(D ⊗D) is finite.
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Proof. The vector space C(D ⊗D)pm has a basis consisting of elements ε ⊗ ε′ where

ε : [q] ↪→ [p], ε′ : [q′] ↪→ [p], q + q′ = m, and [1, p] ⊂ im ε ∪ im ε′. Furthermore, since

we’re working in Drss we require that q, q′ ∈ [s, s + r − 1]. Thus we see that Cp
m

is zero unless m ∈ [2t, 2(t + r − 1)] and p ∈ [s, 2(s + r)], so C(D ⊗ D) is bounded.

Furthermore, each Cp
m is finite.

Proposition 5.3.2. For r finite we have HTC(D ⊗D) = 0.

Proof. Lemma 5.3.1 implies convergence, so we have

HTC(D ⊗D) ∼= TE∞(D ⊗D) ∼= T [E∞(D)⊗ E∞(D)]

by Proposition 4.1.2. We saw in section 2.2 that E∞(Drss) = 0 for r <∞.

The following Proposition works over any ground ring and, in particular, gives

C(W ⊗π (D ⊗D)) ∼= W v ⊗π C(D ⊗D).

Proposition 5.3.3. Let X∗ be a chain complex and let Xv
∗ be the bicomplex which

has X as its zeroth column. If Y •∗ is a cosimplicial chain complex then

C(X∗ ⊗ Y •∗ ) ∼= Xv
∗ ⊗ C(Y •∗ ).

Finiteness of C(D ⊗D) allows us to conclude that

TC(E(D)) = TC(W ⊗π (D ⊗D)) ∼= W ⊗π TC(D ⊗D).

Furthermore, the functor W ⊗π − preserves quasi-isomorphism.

Proposition 5.3.4. Suppose that L → L′ is a map of nonnegatively-graded kπ-

complexes which induces an isomorphism in homology. Then

H(W ⊗π L)→ H(W ⊗π L′)

is an isomorphism as well.
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Proof. The Künneth spectral sequence (see [8, Theorem 2.20])

Ep,q
2 =

⊕
s+t=q

Torpkπ(Hs(W ), H t(L))⇒ H(W ⊗π L)

is a first-quadrant spectral sequence, so it converges. The map L → L′ induces an

isomorphism on E2.

Proposition 5.3.5. For r finite we have TE∞(E(Drst)) = HTC(E(Drst)) = 0.

Proof. We already saw hat TC(E(Drst)) ∼= W ⊗π TC(Drst ⊗ Drst), so we have

HTC(E(Drst)) = 0 by Propositions 5.3.2 and 5.3.4. The spectral sequence converges

by Theorem 5.2.3.

A similar proof gives

PropositionF 5.3.6. If r is finite then TE∞(En(Drst)) = HTC(En(Drst)) = 0.

5.4 All Other Differentials Are Automatic

A spectral sequence with E2 page of the form of Theorem 4.4.1 with E∞ = 0 can

only have one pattern of differential, which we give a rough picture of in Figure 5.2.

We need only consider differentials δj : Ej
p,q → Ej

p−j,q+j−1 for j ≥ 2.

Proposition 5.4.1. The following differentials are nontrivial:

δr : Er
−2s−r,2t+r−1 → Er

−2s−2r,2t+2r−2

δ2r−1 : E2r−1
p,2t → E2r−1

p−2r+1,2t+2r−2 p ∈ [−2s,−s− 1]

δ2r−1−b : E2r−1−b
−s,2t+b → E2r−1−b

b+1−2r−s,2t+2r−2 b ∈ [0, r − 2]

δr : Er
−s,2t+b → Er

−s−r,2t+b+r−1 b ∈ [r − 1,∞)

Proof. First we look at the ‘top row’ [−2s−2r,−s−r]×{2t+2r−2}. All differentials

δj out of Ej
p,q for (p, q) ∈ [−2s − 2r,−s − r] × {2t + 2r − 2} must be zero. We list
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all possibilities for differentials mapping to this row which have the potential to be

nontrivial:

δ2r−1 : E2r−1
p,2t → E2r−1

p−2r+1,2t+2r−2

δr : Er
−2s−r,2t+r−1 → Er

−2s−2r,2t+2r−2

δj : Ej
−s,2t+2r−j−1 → Ej

−s−j,2t+2r−2

where

p ∈ [−2s,−s]! p− 2r + 1 ∈ [−2s− 2r + 1,−2r − s+ 1]

j ∈ [r, 2r − 2]! −s− j ∈ [2− s− 2r,−s− r].

But we have that

[−2s− 2r,−s− r] = [−2s− 2r + 1,−2r − s+ 1] t {−2s− 2r} t [2− 2r − s,−s− r],

so each map listed above must have rank 1.

This leaves us only with the leftmost column

{−s− r} × [2t+ 2r − 1,∞)

and part of the rightmost column {−s} × [2t + r,∞) still unaccounted for. Then it

is obvious that there is only one possibility:

δr : Er
−s,q → Er

−s−r,q+r−1 q ∈ [2t+ r,∞).

Corollary 5.4.2. Let E∗∗,∗ be the spectral sequence associated with E(Drst). We record

when various bidegrees become zero; they each contain a copy of k on the previous

page. First for the lower right portion

E2r
p,2t = 0 p ∈ [−2s,−s]

E2t+2r−v
−s,v = 0 v ∈ [2t+ 1, 2t+ r − 1]

Er+1
−s,q = 0 q ∈ [2t+ r,∞)
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−s−s− r−2s−2s− r−2s− 2r

2t

2t+ r − 1

2t+ 2r − 2

δr

δr

...

· · · δ2r−1 · · ·

Figure 5.2. Differentials in the spectral sequence associated to E(Drst)

then for the upper left portion

Er+1
−2s−2r,2t+2r−2 = 0

E2r
p,2t+2r−2 = 0 p ∈ [−2s− 2r + 1,−2r − s+ 1]

E−s−p+1
p,2t+2r−2 = 0 p ∈ [−2r − s+ 2,−s− r]

Er+1
−s−r,q = 0 q ∈ [2t+ 2r − 1,∞)

and finally

Er+1
−2s−r,2t+r−1 = 0.

Remark. E2r = 0.

We will not attempt to deduce the all differentials in the spectral sequence asso-

ciated to En(Drst). Though the higher differentials are determined by the structure

of E2, the vanishing of E∞, and naturality, even a statement along the lines of this

Proposition 5.4.1 is horrendously complicated with many cases. Luckily, we will only

need partial information about the differentials in this spectral sequence. We post-

pone further discussion of this spectral sequence until Chapter 7.
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6. DEFINITION OF THE OPERATIONS

6.1 Products and Operations on Cycles

This section is a bit of a warm-up for what will come. The first goal is to define

the (external) product in the spectral sequence of a cosimplicial chain complex Y and

show that it is commutative. We define external operations for r-cycles and show

that the bottom operation agrees with the external square.

In general, if Y is a cosimplicial chain complex equipped with a multiplication

Y ⊗ Y → Y,

then there is a product

Er(Y )⊗ Er(Y )→ Er(Y )

which is a derivation for δr, coming from

C(Y )⊗ C(Y )
AW→ C(Y ⊗ Y )→ C(Y ).

In our setting, we start with a cosimplicial map

θ : E(Y )→ Y

and obtain a product by precomposition with

κ : Y ⊗ Y = k⊗ Y ⊗ Y 17→e0−→ W ⊗ Y ⊗ Y → W ⊗π (Y ⊗ Y ) = E(Y ).

Products Er(Y )⊗ Er(Y )→ Er(Y ) obtained from

Y ⊗ Y κ→ E(Y )
θ→ Y

are commutative for r ≥ 2.
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Proposition 6.1.1. Let Y be a cosimplicial chain complex and r ≥ 2. The external

product

µr : Er(Y )⊗ Er(Y )
AW→ Er(Y ⊗ Y )→ Er(E(Y ))

is commutative.

Proof. Since AW becomes π-equivariant starting at E2 (see the remark on page 29),

we can reduce the problem to showing that the following holds on E2:

µ2σ = κAWσ = κσAW
?
= κAW = µ2.

The equality µrσ = µr then follows for all r ≥ 2.

Thus we merely need to show that κσ = κ on E2. This is actually true on E1.

Consider v ∈ Z1
−s(Y ⊗ Y ) ⊂ TC(Y ⊗ Y ), then we have the formula

∂(e1 ⊗ v) = (1 + σ)e0 ⊗ v + e1 ⊗ ∂v

in T [W v ⊗π C(Y ⊗ Y )] = TC(E(Y )). Notice that

∂(e1 ⊗ v) ∈ ∂F−s = ∂Z0
−s+1−1 ⊂ B1

−s

and

e1 ⊗ ∂v ∈ F−s−1 = Z0
−s−1 ⊂ B1

−s.

Furthermore,

(1 + σ)e0 ⊗ v = (κ+ κσ)v,

so κ = κσ on E1.

We now define external operations on r-cycles using the universal property of Drst.

The idea is that the lower ‘ L’ in the spectral sequence for E(Drst) should map to the

external operations. We saw in §5.4 that the 2nd page is the same as the rth page in

this spectral sequence. Theorem 4.4.1 then says that E2
p,q = Er

p,q is either k or 0; in

the former case we write qp,q for the generator.
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Definition. We define functions

Q̂m : Zr(Y )→ Er(E(Θy))

as follows. For y ∈ Zr
−s,t(Y ), we let

Q̂m
v (y) = Er(E(Θy))(q−s,m+t) m ≥ t

Q̂m
h (y) = Er(E(Θy))(qm−s−t,2t) m ∈ [t− s, t]

which are all classes of Er(E(Y )). Here Θy is the map from Proposition 2.2.2.

The idea is that the lower ‘ L’ in the spectral sequence for E(Drst) should map to

the external operations of y ∈ Zr
−s,t.

Remark. Recall that on Er, Θy only depends on the class of y in Er, rather than

on y itself. The situation is much more subtle for E(Θy), and, at Er, this map does

depend on the specific choice of r-cycle.

Notice that an r-cycle is, in particular, an (r − 1)-cycle. Let us now compare the

answers we get by considering an r cycle in these two ways.

Proposition 6.1.2. Let r > 2, and suppose y ∈ Zr
−s,t(Y ). Write yr for y considered

as an element of Zr and yr−1 ∈ Zr−1 for y considered as an r − 1 cycle. Then

Q̂m
• (yr) = [Q̂m

• (yr−1)]r.

Before beginning the proof, notice that we can easily compare the two construc-

tions because

Dr−1,st

Θy
##FFFFFFFFF
Θı // Drst

Θy
}}{{{{{{{{

Y

(6.1)

commutes.

We will need the following Lemma. It says that if we consider the inclusion

Θı : Drst → D∞st, then E2(E(Θı)) is an injection when restricted to the bottom ‘ L’.
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Lemma 6.1.3. Consider the inclusion Θı : Drst → D∞st. The map E2(E(Θı)) takes

qp,q to qp,q for (p, q) ∈
(
[−2s,−s]× {2t}

)
∪
(
{−s} × [2t,∞)

)
.

Proof. On E1, the map E(Θı) is an isomorphism in this range.

Proof of Proposition 6.1.2. A special case of diagram (6.1) is when Y = D∞st and

y = ı. Combined with Lemma 6.1.3, this tells us that in the spectral sequence,

E(Dr−1,st)→ E(Drst) takes the lower ‘ L’ to the lower ‘ L’. Furthermore, the following

commutes,

E2(E(D(r−1)st))

((PPPPPPPPPPPP

E2EΘı // E2(E(Drst))

wwooooooooooo

E2(E(Y ))

which implies that the representatives on the second page of Q̂m
• (yr) and Q̂m

• (yr−1)

are the same. The result follows.

6.1.1 Bottom Operation is the Square

We now show that the bottom operation coincides with the squaring operation.

In particular, since the external product is commutative, this shows that the bottom

operation is additive.

Lemma 6.1.4. Let r ≥ 2. In the case of the universal example Drst,

µr(ı⊗ ı) 6= 0

where

µr : Er(Drst)⊗ Er(Drst)→ Er(E(Drst))

is the external multiplication.

Proof. First notice that we can factor the external multiplication as

Ej(Drst)⊗ Ej(Drst)
∼=→ Ej(Drst ⊗Drst)→ Ej(E(Drst)),
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with the first arrow an isomorphism when j ≥ 2. It is slightly easier to show that

E2(Drst ⊗Drst)→ E2(E(Drst))

is nontrivial; the result then follows by examining the spectral sequence for E(Drst)

since nothing can hit the element in bidegree (−2s, 2t).

The vertical maps in the following commutative diagram are nontrivial, where

Drst → D∞st is the inclusion.

E2
−2s,2t(Drst ⊗Drst)

��

// E2
−2s,2t(E(Drst))

��

E2
−2s,2t(D∞st ⊗D∞st) // E2

−2s,2t(E(D∞st))

The diagram

E2
−2s,2t(D∞st ⊗D∞st) // E2

−2s,2t(E(D∞st))

H2sΩs,s
// H2sΩ̄s

∼= Prop. 4.2.1

OO

also commutes, and at the beginning of the proof of Theorem 4.3.2 we saw that

H2sΩs,s → H2sΩ̄s is an isomorphism.

Proposition 6.1.5. Let y ∈ Zr
−s,t(Y ). Then

µr([y], [y]) = Q̂t−s(y).

Proof. Let Θy : Drst → Y be the representing map from Proposition 2.2.2. Then

Q̂t−s(y) = Er(E(Θy))(q−2s,2t) = Er(E(Θy))(µr(ı⊗ ı))

by the preceding lemma. Since µr : Er(−) ⊗ Er(−) ⇒ Er(E(−)) is a natural trans-

formation, we have a commutative diagram

Er(Drst)⊗ Er(Drst)
µr

//

Er(Θy)⊗Er(Θy)

��

Er(E(Drst))

Er(E(Θy))

��

Er(Y )⊗ Er(Y )
µr

// Er(E(Y ))

so

Q̂t−s(y) = µr(E
r(Θy)⊗ Er(Θy)(ı⊗ ı)) = µr([y], [y]).
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There are two consequences to this Proposition. The first is that

Q̂t−s : Zr
−s,t(Y )→ Er(E(Y ))

is additive. This follows from commutativity of µr. Second, Q̂t−s induces a homo-

morphism

Q̃t−s : Er
−s,t(Y )→ Er(E(Y ))

since µr only depends on the Er-class of a given r-cycle.

6.2 Additivity and Sums of Bousfield-Kan Examples

The goal of this section is to prove the following proposition for m > t− s.

Proposition 6.2.1 (Additivity). Let r ≥ 2. The functions

Q̂m
v :Zr

−s,t(Y )→ Er
−s,m+t(E(Y )) m ≥ t

Q̂m
h :Zr

−s,t(Y )→ Er
m−s−t,2t(E(Y )) m ∈ [t− s, t]

are homomorphisms.

Let x, y ∈ Zr
−s,t(Y ). The following diagram commutes

Drst

Θx+y !!DDDDDDDD
// Drst ⊕Drst

Θx⊕Θy
yysssssssssss

X

where the top map is the diagonal. This suggests that analyzing the spectral sequence

for E(Drst ⊕Drst) may be helpful in understanding additivity. We will need greater

generality later, so we now investigate the spectral sequence associated to E(Drst ⊕

Dr′s′t′).

If A and B are chain complexes, then(
(A⊕B)⊗ (A⊕B)

)
= (A⊗ A)⊕ (B ⊗B)⊕

(
A⊗B ⊕B ⊗ A

)
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as kπ-modules. Since A⊗B ⊕B ⊗ A is a free π-module, we see

W ⊗π
(

(A⊕B)⊗ (A⊕B)
)

= (W ⊗π (A⊗ A))⊕ (W ⊗π (B ⊗B))⊕ (W ⊗ A⊗B).

Lemma 6.2.2. Let X and Y be cosimplicial chain complexes. Then

E(X ⊕ Y ) ∼= E(X)⊕ E(Y )⊕ (W ⊗X ⊗ Y )

via

en ⊗ (x+ y)⊗ (x′ + y′) 7→
en ⊗ x⊗ x′ + en ⊗ y ⊗ y′

+en ⊗ x⊗ y′ + σen ⊗ x′ ⊗ y

and the obvious inclusions of the first two summands along with the inclusion

W ⊗X ⊗ Y → W ⊗π
(

(X ⊕ Y )⊗ (X ⊕ Y )
)

en ⊗ x⊗ y 7→ en ⊗ x⊗ y

σen ⊗ x⊗ y 7→ σen ⊗ x⊗ y = en ⊗ y ⊗ x.

In particular,

E(Drst ⊕Dr′s′t′) ∼= E(Drst)⊕ E(Dr′s′t′)⊕ (W ⊗Drst ⊗Dr′s′t′).

Conormalization is an additive functor, as is the functor which takes a bicomplex to

its associated spectral sequence, so we see that we’re left with only computing the

spectral sequence for

W ⊗Drst ⊗Dr′s′t′ .

But this is easy – the inclusion

Drst ⊗Dr′s′t′ → W ⊗Drst ⊗Dr′s′t′

induces an isomorphism on E1 by the Künneth theorem, so by Proposition 4.1.2,

Ej(W ⊗Drst ⊗Dr′s′t′) ∼= Ej(Drst)⊗ Ej(Dr′s′t′)



54

for j ≥ 2. In particular, E2(W ⊗Drst ⊗Dr′s′t′) is zero outside of the following set of

bidegrees: 
(−s− s′, t+ t′),

(−s− s′ − r, t+ t′ + r − 1), (−s− s′ − r′, t+ t′ + r′ − 1),

(−s− s′ − r − r′, t+ t′ + r + r′ − 2).

 (6.2)

Proof of Proposition 6.2.1. Applying E and Lemma 6.2.2, we find

E(Drst)

E(Θx+y) $$JJJJJJJJJ
// E(Drst ⊕Drst)

wwppppppppppp

6.2.2 E(Drst)⊕ E(Drst)⊕ (W ⊗Drst ⊗Drst)

E(Θx)+E(Θy)+???nnE(X)

Using the formula from that Proposition we see that the composite

E(Drst)→ E(Drst ⊕Drst)� E(Drst)⊕ E(Drst)

is just the diagonal.

We examine the map

E2(E(Drst))→ E2(W ⊗Drst ⊗Drst)

in bidegrees {−s}× [2t,∞) and [−2s,−s−1]×{2t}. Of course E2(W⊗Drst⊗Drst) =

E2(Drst)⊗ E2(Drst) is zero at all of these bidegrees except for

E2
−2s,2t(W ⊗Drst ⊗Drst) = k.

In particular, we know that for m > t− s

Q̂m
v (x+ y) = Q̂m

v (x) + Q̂m
v (y) m ≥ t

Q̂m
h (x+ y) = Q̂m

h (x) + Q̂m
h (y) m ∈ (t− s, t]

We saw in the last section that Q̂t−s is additive.

We will need the following Lemma at the beginning of the next section.
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Lemma 6.2.3. We have

E2(E(D1st)) = 0,

which implies

E2 (E(Drst ⊕D1s′t′)) ∼= E2(E(Drst)).

Proof. The implication comes from

E(Drst ⊕D1s′t′) ∼= E(Drst)⊕ E(D1s′t′)⊕ (W ⊗Drst ⊗D1s′t′)

and the fact that E2(W ⊗Drst ⊗D1s′t′) ∼= E2(Drst)⊗ E2(D1s′t′) = 0.

First, notice that D1ss is concentrated in homological degree s and E0 = E1 for

this spectral sequence. Since

Hk(D
p
1ss) = (Dp

1ss)k =

∆p
s k = s

0 k 6= s

.

The basis for the conormalization of E(D1ss) consists of

en ⊗ id[s]⊗ id[s]

en ⊗ d0 ⊗ d0

and also

e0 ⊗ ε⊗ ε′

where ε < ε′ in ∆p
s. Since we have the full group ∆p

s we don’t have to worry about

the issues of §3.2. The differential on something in homological degree 2s is

e0 ⊗ ζ(S)⊗ ζ(T ) 7→

e0 ⊗ ζ(S + 1)⊗ ζ(T + 1) 0 ∈ S ∪ T

0 0 /∈ S ∪ T

(including the cases S = T = [s] and S = T = [1, s + 1] ⊂ [s + 1]). Using the

contraction

e0 ⊗ ζ(S)⊗ ζ(T ) 7→

e0 ⊗ ζ(S − 1)⊗ ζ(T − 1) 0 /∈ S ∪ T

0 0 ∈ S ∪ T
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along with the fact that

δ1(en ⊗ id[s]⊗ id[s]) = en ⊗ d0 ⊗ d0

we see that E2 = 0.

6.3 Definition of the Operations

At the moment we have (additive) operations Q̂m which are defined on r-cycles.

The goal of this section is to show that these induce operations which are defined

on classes in the spectral sequence. The simplest thing would be to show that Q̂m

vanishes on

Br
−s,t = ∂Zr−1

−s+r−1,t−r+2 + Zr−1
−s−1,t+1

for all m, but this does not happen. It turns out that the horizontal operations Q̂m
h

may be nonzero on ∂Zr−1
−s+r−1,t−r+2, which leads to the indeterminacy in Theorem 6.3.6.

We begin with the easy part of Br
−s,t: elements in lower filtration.

Lemma 6.3.1. The homomorphisms Q̂m vanish on Zr−1
−s−1,t+1 for r ≥ 2.

Proof. Write r′ = r − 1, s′ = s + 1, t′ = t + 1 and let y ∈ Zr′

−s′,t′(Y ) ⊂ Zr
s,t(Y ). Then

the following commutes

Drst

Θry !!CCCCCCCC
Θı // Dr′s′t′

Θr
′
y||xxxxxxxxx

Y

where, of course, we regard ı ∈ Zr′

−s′,t′(Dr′s′t′) as an element of Zr
−s,t. If r′ ≥ 2, then

by Theorem 4.4.1 the E2 page of the spectral sequence of E(Dr′s′t′) is zero except for

the following ranges of bidegrees:

{−s− 1} × [2t+ 2,∞)

{−s− r} × [2t+ 2r − 2,∞)

[−2s− 2,−s− 2]× {2t+ 2}

{−2s− r − 1} × {2t+ r}

[−2s− 2r,−s− r − 1]× {2t+ 2r − 2}
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which means that Er(E(Dr′s′t′)) is zero on the ranges {−s}× [2t,∞) and [−2s,−s−

1]× {2t} we are interested in. The diagram

Er(E(Drst))

''OOOOOOOOOOO
// Er(E(Dr′s′t′))

wwnnnnnnnnnnnn

Er(E(Y ))

commutes and the rightmost composition takes qp,q to zero for (p, q) ∈ {−s}×[2t,∞)∪

[−2s,−s− 1]× {2t}, so all of the Q̂ must vanish on y.

The case r = 2 is even easier, since we know E2(E(D1s′t′)) = 0 by Lemma 6.2.3.

We now shift our attention to ∂Zr−1
−s+r−1,t−r+2. We run into a problem immediately,

for we would like to use the diagram

Drst

Θ∂y !!CCCCCCCC
Θ∂ı // Dr−1,s+1−r,r−t−2

Θy
xxpppppppppppp

Y

where y ∈ Zr−1
−s+r−1,t−r+2, but this diagram does not commute. To see this, write

y =
∞∑

j=s−r+1

yj where yj ∈ C(Y )j.

We have

∂y =
∞∑
k=s

(d̄yk−1 + dyk) ∈ F−s

since y is an (r − 1)-cycle. Then

C(Θ∂y)

(
s+r−1∑
j=s

id[j]

)
=

s+r−1∑
j=s

(d̄yj−1 + dyj)

and

C(Θy)C(Θ∂ı)

(
s+r−1∑
j=s

id[j]

)
= C(Θy)(d̄ id[s−1])

= d̄ys−1.
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Lemma 6.3.2. If

y =
s−1∑

j=s−r+1

yj ∈ Zr−1
−s+r−1,t−r+2

then the diagram

Drst

Θ∂y !!CCCCCCCC
Θ∂ı // Dr−1,s+1−r,r−t−2

Θy
xxpppppppppppp

Y

commutes.

Suppose that

y =
∞∑

j=s−r+1

yj ∈ Zr−1
−s+r−1,t−r+2.

Then the tail
∞∑
j=s

yj ∈ F−s ⊂ Zr−1
−s+r−1,t−r+2,

so we can split y up into two pieces

y =
s−1∑

j=s−r+1

yj +
∞∑
j=s

yj

both of which are in Z−s+r−1,t−r+2. We treat the tail piece now, so that we can use

Lemma 6.3.2 later.

Proposition 6.3.3. The homomorphisms Q̂m vanish on ∂F−s.

Proof. Lemma 6.3.1 guarantees that the operations vanish on elements of ∂F−s−1 ⊂

Zr−1
−s−1,t+1. By additivity we may consider the boundary of a single element in cosim-

plicial degree s:

y = yst+1.

Define a cosimplicial chain complex V (depending on s and t) schematically by

∆•s

id
��

in homological degree t+ 1

∆•s in homological degree t
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with zero outside of these two homological degrees. The conormalization of this is

pictured in the right hand side of Figure 6.1, as well as a map of bicomplexes from

C(Drst) to C(V) (open circles map to open circles).

This figure tells us that the diagram

C(Drst) //

Θ∂z $$JJJJJJJJJ
C(V)

{{vvvvvvvvv

C(Y )

commutes, where C(V) → C(Y ) is the map taking the square in the former to the

square

d̄yst+1

��

yst+1

��

oo

d̄dyst+1 dyst+1
oo

in C(Y ). We apply E to get the commutative diagram

E(Drst) //

Θ∂y $$IIIIIIIII
E(V)

{{wwwwwwww

E(Y )

The vanishing of the vertical homology of V implies the vanishing of E1(E(V)), so

E1(E(Θ∂y)) = 0.

Lemma 6.3.4. The vertical maps Q̂v vanish on ∂Zr−1
−s+r−1,t−r+2 for r > 2.

−s

t
t+ 1

t+ r − 2
t+ r − 1

−s

t
t+ 1

Figure 6.1. C(Drst)→ C(V)
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Proof. Let r′ = r− 1, s′ = s+ 1− r, t′ = t− r+ 2 and suppose that y ∈ Zr−1
−s+r−1,t−r+2

has the form

y =
s−1∑

j=s−r+1

yj.

We know this is good enough by applying the previous Proposition and additivity.

Since y has this form, the following diagram commutes

Drst

Θ∂y !!CCCCCCCC
Θ∂ı // Dr′s′t′

Θy
||xxxxxxxxx

Y

Applying Theorem 4.4.1 to E(Dr′s′t′) (when r > 2) we find nonzero terms exactly in

the following bidegrees:

{−s− 1− r} × [2t− 2r + 4,∞)

{−s} × [2t,∞)

[−2s+ 2r − 2,−s+ r − 2]× {2t− 2r + 4}

{−2s+ 2r − 1} × {2t− r + 2}

[−2s,−s− 1]× {2t}

The column {−s} × [2t,∞) vanishes at Er by the ‘upper left portion’ part of Corol-

lary 5.4.2, so the vertical operations Q̂v(∂y) vanish at Er.

Lemma 6.3.5. If r = 2 then the homomorphisms Q̂ vanish on ∂Z1
−s+1,t.

Proof. Apply E2E to the diagram from the proof of Lemma 6.3.4:

D2st

Θ∂y !!CCCCCCCC
Θ∂ı // D1s′t′

Θy
||yyyyyyyy

Y

Lemma 6.2.3 says that E2(E(D1s′t′)) = 0.

Theorem 6.3.6. The homomorphisms of Proposition 6.2.1 induce homomorphisms

Q̃m
v :Er

−s,t(X)→ Er
−s,m+t(E(X)) m ≥ t

Q̃m
h :Er

−s,t(X)→ Ew
m−s−t,2t(E(X)) m ∈ [t− s, t]
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where

w =


r m = t− s

2r − 2 m ∈ [t− s+ 1, t− r + 2]

r + t−m m ∈ [t− r + 3, t].

Notice that if r = 2, then w = 2.

Proof. We have already shown that the vertical operations pass to this quotient using

Lemmas 6.3.1 and 6.3.4. The well-definedness of the horizontal operations follows

from the diagram in Lemma 6.3.4 by applying the second part of Corollary 5.4.2 to

Dr−1,s+1−r,t−r+2.

We give an example to show that the w above is the best possible. Consider the

diagram

E(Drst)

E(Θ∂y) $$IIIIIIIII

E(Θ∂ı)
// E(Dr−1,s+1−r,t−r+2)

E(Θy)
vvnnnnnnnnnnnnn

E(Y )

from Lemma 6.3.4.

Example. We let t = s ≥ r − 1, and take Y = Dr−1,s+1−r,s−r+2 with

y = ı =
k∑

k=s+1−r

id[k]

as our example. The following commutes

Hs(Drss)
Θ∂ı //

∼=
��

Hs−1(Dr−1,s+1−r,s−r+2)

Hs(D∞ss)
∼=
∂

// Hs−1(sks−1 ∆)

∼=

OO

and so

Ω̄s

((QQQQQQQQQQQQQQQ

yysssssssssss

E1(E(Drss)) // E1(E(Dr−1,s+1−r,s−r+2))
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commutes as well. Thus, at E2, generators in the strip [−2s,−s] × {2t} map to

nonzero elements. Vanishing of their images occurs at exactly the page described by

‘w’ in the Theorem.
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7. COSIMPLICIAL FINITE LOOP SPACES

We now turn our attention to partial external operations. For a cosimplicial chain

complex Y , these are operations whose target is the spectral sequence for

En(Y ) = sknW ⊗π (Y ⊗ Y ).

They are of particular interest when we have a map

En(Y )→ Y,

such as when Y = S∗X where X is a cosimplicial En+1-space.

Parallel to what we did in Chapter 6, we would like to first define operations on

r-cycles:

Definition. Consider the functions

Q̂m : Zr
−s,t(Y )→ Er(En(Y ))

defined, for y ∈ Zr
−s,t(Y ), by

Q̂m
v (y) = Er(En(Θy))(q−s,m+t) m ∈ [t, t− s+ n]

Q̂m
h (y) = Er(En(Θy))(qm−s−t,2t) m ∈ [t− s,min(t, t− s+ n)]

where qp,q ∈ E2
p,q(En(Drst)) is nonzero.

Unfortunately this definition does not make any sense yet. Why should the indi-

cated q survive to page r? How do we know that there is only one generator in the

indicated bidegrees? Section 7.2 is devoted to these questions and the results there

show that this definition is a good one.

We expect that the top operation will not be additive, so we cannot immediately

carry out the program in section 6.3 to induce operations on the spectral sequence.

We will define the Browder operation in Section 7.3 in order to study the deviation

from additivity of Q̂t−s+n.
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7.1 Spectral Sequence Associated to En(D∞st)

We give a full computation of the spectral sequence indicated in the title. We

do not logically need these results for what follows, but this section provides a hint

that our program is reasonable, at least at the limit. Furthermore, we promised

Corollary 7.1.2 way back in Section 5.1.

Theorem 7.1.1. Consider the spectral sequence for En(D∞st). The classes from E2

which survive and are nonzero at E∞ are exactly those of L in total degrees

[2t− 2s, 2t− 2s+ n].

Proof. We wish (according to Theorem 5.2.3 and Proposition 5.3.3) to compute the

cohomology of

T ((sknW )v ⊗π C(D ⊗D)),

where D = D∞ss. If we set

bnm = dimHmT ((sknW )v ⊗π C(D ⊗D)),

we already know from Theorem 5.2.3 and Section 5.1 that

b∞m =

1 m ≥ 0

0 m < 0

and from Theorem 5.2.3 and Proposition 4.1.2 that

b0
m =

1 m = 0

0 m 6= 0.

We use comparison and induction to interpolate between these two extremes and

show that

bnm =

1 m ∈ [0, n]

0 otherwise.
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We have two exact sequences of complexes

0→ sknW → W → Σn+1W → 0 (7.1)

and

0→ sk0W → sknW → Σ skn−1W → 0 (7.2)

where the first map is the obvious inclusion in both cases. Freeness of Wi over kπ

tells us that if we apply (−)v ⊗π C(D⊗D) to either of these exact sequences we will

still have a short exact sequence of bicomplexes. Furthermore,
∏

is exact so applying

T we again get short exact sequences of complexes – write

Bn = T ((sknW )v ⊗π C(D∞ss ⊗D∞ss))

for this composite.

We first apply T ((−)v ⊗π C(D ⊗ D)) to SES(7.2). The short exact sequence of

complexes

0→ B0 → Bn → ΣBn−1 → 0

gives us a long exact sequence in homology, so we have

HmB
0 // HmB

n // HmΣBn−1 // Hm−1B
0

0 Hm−1B
n−1 0

for m− 1 > 0. If we assume inductively that

bn−1
m =

1 m ∈ [0, n− 1]

0 otherwise

then we see that bnm is zero for m ∈ [n+ 1,∞) and one for m ∈ [2, n].

Next we apply T ((−)v ⊗π C(D ⊗D)) to SES(7.1), so we have

0→ Bn → B∞ → Σn+1B∞ → 0

and in the long exact sequence in homology we get

Hm+1Σn+1B∞ // HmB
n // HmB

∞ // HmΣn+1B∞

Hm−nB
∞ Hm−n−1B

∞
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This tells us that bnm = b∞m for m < n, since there b∞m−n = 0 = b∞m−n−1.

We thus know bnm on [2,∞) and (∞, n−1], so for n ≥ 2 we know it for all m. The

only thing we’re missing is b1
1, but this follows from the exact sequence

0 // H1B
1 // H1ΣB0 // H0B

0 // H0B
1 // 0

k k k

Corollary 7.1.2. The differentials in the spectral sequence for En(D∞st) are

δn+1−b : C 〈−s, 2t+ b〉 7→ T 〈b− s− n− 1, 2t+ n〉 b ∈ [max(n+ 1− s, 0), n− 1]

δn+1 : B 〈a− 2s, 2t〉 7→ T 〈a− 2s− n− 1, 2t+ n〉 a ∈ [n+ 1, s− 1]

Proof. When s = 0 this Corollary says that there are no nontrivial differentials, which

is obvious since E2 consists of a single column.

Assume s > 0 and t = 0. First note that L lives in total degrees [−2s,−s+n− 1]

and T lives in total degrees [−2s+ n,−s+ n− 2]. All differentials out of T are zero,

so those elements in total degrees (−2s + n,−s + n − 2] must be hit by something

(Theorem 7.1.1). Thus we have the differentials

δ∗ : L(−2s+ n+ 1,−s+ n− 1]→ T(−2s+ n,−s+ n− 2]

are nontrivial. The classes that are unaccounted for are L[−2s,−2s + n + 1] and

T{−2s + n}. The element in L{−2s + n + 1} doesn’t survive to E∞, and since it

lives in the second page it cannot map to something in L. Hence there is a nontrivial

differential

L 〈−2s+ n+ 1〉 7→ T 〈−2s+ n〉 .

The statement then follows by passing from total degree to bidegree.

7.2 Spectral Sequence Associated to En(Drst) for r <∞

We will actually need to know very little about the behavior of the spectral se-

quence for En(Drst) in order to define the operations. In this section we compute

enough of the differentials to give a partial analogue to Corollary 5.4.2.
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The main tool will be the comparison

φ : En(Drst)→ E(Drst)

induced by the inclusion

sknW ↪→ W.

Proposition 7.2.1. Let n ≥ 1 and ∞ > r ≥ 2. The kernel of φ on the second page

is

ker(E2(φ)) = k(T t Td tM2).

Proof. Note that the map C(φ) is just an inclusion. At E1 the representatives of

T̃, T̃d, and M̃2 are all vertical boundaries, so k(TtTdtM2) ⊂ ker(E2(φ)). Comparing

representatives in Theorem 3.1.1 with the representatives in TheoremF3.1.2 tells us

that this inclusion is equality.

Define a set of integral lattice points L = Lnrst by

[−2s− 2r,−2s− 2r + n]× {2t+ 2r − 2}

if n ≤ s+ r − 1 and by(
[−2s− 2r,−s− r − 1]× {2t+ 2r − 2}

)
∪
(
{−s− r} × [2t+ 2r − 2, 2t+ r − s− 2 + n]

)
if n ≥ r + s.

Proposition 7.2.2. If (p, q) ∈ L, then

E2
p,q(En(Drst)) = k.

Proof. We know that 1 is a lower bound for dimension since at each of these lattice

points there is an element of Ld. The only classes at E2 which might share a bidegree

with Ld (and hence with L) are T and M2. Notice that the lattice points of L cover

the following range of total degrees:

[2t− 2s− 2, 2t− 2s+ n− 2],
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while by TheoremF4.4.2 we know that M2 lives in total degree 2t − 2s + n − 1 and

T lives in total degree 2t− 2s+ n and above.

Lemma 7.2.3. In the spectral sequence for En(Drst) we have

δr[M1 〈−2s− r, 2t+ r − 1〉]r = [Bd 〈−2s− 2r, 2t+ 2r − 2〉]r.

Proof. Assume that t = 0. Let v ∈ Bd, and v′ ∈ M1 be the elements from the

statement. We list the ranges of total degrees of each of the various subsets which

constitute a basis for E2 (when s > 0):

L : [−2s,−s+ n− 1] Ld : [−2s− 2,−s+ r + n− 3]

T : [−2s+ n,−s+ n− 2] Td : [−2s+ n− 2,−s+ r + n− 4]

M1 : {−2s− 1} M2 : {−2s+ n− 1}

Then element v is in the smallest possible total degree −2s−2 so must be hit by some-

thing in total degree −2s − 1 since E∞ = 0 (PropositionF5.3.6). The only elements

which are in total degree−2s−1 are v′ and, if n = 1, the element Td 〈−2s− 2r, 2r − 1〉

(here we use that n ≥ 1). Examination of bidegrees indicates that the second of these

could only hit v via δ1, so we have the stated result for s > 0. The proof for s = 0 is

similar.

Proposition 7.2.4. Suppose that v ∈ L has total degree in

[2t− 2s, 2t− 2s− 1 + n]

and j is such that δj[φv]j 6= 0. Then

0 6= δj[v]j ∈ Ld.

Proof. Assume t = 0. If [v]j makes sense (that is δk[v]k = 0 for k < j), then

φδj[v]j = δjφ[v]j = δj[φv]j 6= 0

so δj[v]j 6= 0. Proposition 7.2.2 coupled with Proposition 5.4.1 then tell us that it

must land in the stated place.
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We now show that δk[v]k = 0 for 2 ≤ k < j. By Lemma 7.2.3 we know that v

does not hit M1 nontrivially. The differential of v is in the following range of total

degrees,

[−2s− 1,−2s+ n− 2]

so we see (as in the proof of Prop. 7.2.2) that v cannot hit any of the bidegrees

spanned by T or M2. On the other hand, Td lives in the following range of total

degrees

[−2s+ n− 2, r − s+ n− 4],

so it’s possible that v hits something in Td if it has total degree −2s − 1 + n. But

Td is so far away that this must happen on a page bigger than j (see Figure 4.2 on

page 36). To be precise, the differential would be one of

δ2r+s : C 〈−s,−s− 1 + n〉 7→ Td 〈−2s− 2r, 2r + n− 2〉

δ2r+n−1 : B 〈−2s− 1 + n, 0〉 7→ Td 〈−2s− 2r, 2r + n− 2〉

whereas j ≤ 2r − 1 by Proposition 5.4.1.

This Proposition tells us that the spectral sequence for En(Drst) vanishes in the

bidegrees of L at exactly the same time as in E(Drst). This is exactly what we’re

going to need to help us show that the Q̂m vanish on appropriate boundaries.

7.3 Additivity and the Browder Operation

We would like to mimic Section 6.3, but on first glance it appears that Proposi-

tion 6.2.1 fails when m = t− s+ n because of the classical formula ( [4, Proposition

6.5])

ξn(x+ y) = ξn(x) + ξn(y) + λn(x, y)

where λn is the Browder operation and ξn(xq) = Qq+n(x). Surprisingly, additivity

holds even for the top operation as long as s > 0. We will see in a moment that this

happens because the Browder operation lands in a lower filtration degree, but first

we prove the additivity statement.
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Proposition 7.3.1 (Additivity). Let r ≥ 2 and

b =

t− s+ n s > 0

t+ n− 1 s = 0.

The functions

Q̂m
v :Zr

−s,t(Y )→ Er
−s,m+t(En(Y )) m ∈ [t, b]

Q̂m
h :Zr

−s,t(Y )→ Er
m−s−t,2t(En(Y )) m ∈ [t− s,min(t, t− s+ n)]

are homomorphisms.

Proof. As in the proof of Proposition 6.2.1, we have

E1(sknW ⊗Drst ⊗Drst) ∼= H∗(sknW )⊗ E1(Drst)⊗ E1(Drst)

which is nonzero only in the following list of bidegrees:

(−2s, 2t), (−2s− r, 2t+ r − 1), (−2s− 2r, 2t+ 2r − 2)

(−2s, 2t+ n), (−2s− r, 2t+ r − 1 + n), (−2s− 2r, 2t+ 2r − 2 + n)

since H∗(sknW ) = ke0 ⊕ k(1 + σ)en. The only possible overlap with bidegrees of the

operations are (−2s, 2t), which is the external square, and, if s = 0, (0, 2t + n). But

this last bidegree corresponds to the operation Q̂t+n
v (when s = 0), which the one

operation that is excluded from the statement of the Proposition.

Definition (Browder Operation). Let Y be a cosimplicial chain complex. Consider

k as a chain complex in degree 0. Using the map k → Σ−n sknW which sends 1 to

(1 + σ)en for the middle arrow below, we consider the map of bicomplexes

C(Y )⊗ C(Y ) AW // C(Y ⊗ Y ) // Σ−nC(sknW ⊗ Y ⊗ Y )

��

Σ−nC(En(Y ))

Then we have a map

λ̃n : Er
−s,t(Y )⊗ Er

−s′,t′(Y )→ Er
−s−s′,t+t′+n(En(Y ))

which we call the external Browder operation.
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There is a discrepancy in bidegrees. The top Dyer-Lashof operation for an element

in Zr
−s,t is in bidegree (−s, 2t+n−s) or (−2s+n, 2t), whereas the Browder operation

of two elements in Er
−s,t is in bidegree (−2s, 2t + n). When s = 0 the Browder

operation still measures the deviation from additivity of the top operation.

Proposition 7.3.2. Suppose that x, y ∈ Zr
0,t(Y ). Then

Q̂t+n
v (x+ y) = Q̂t+n

v (x) + Q̂t+n
v (y) + λ̃n([x]r, [y]r).

Proof. Examine the diagram from Proposition 6.2.1

Dr0t

Θx+y !!DDDDDDDD
// Dr0t ⊕Dr0t

Θx⊕Θy
yysssssssssss

Y

where the top map is the diagonal. Lemma 6.2.2 still works when we replace W by

sknW and we again get the decomposition

En(D)

En(Θx+y) $$IIIIIIIII
// En(D ⊕D)

xxqqqqqqqqqq

6.2.2 En(D)⊕ En(D)⊕ (sknW ⊗D ⊗D)

En(Θx)+En(Θy)+???nnEn(Y )

where D = Dr0t. The image of q0,2t+n under En(Θx) and En(Θy) give Q̂t+n
v (x) and

Q̂t+n
v (y). We now seek to identify the image of q0,2t+n under the composite

En(D)→ sknW ⊗D ⊗D → EnY.

For maps f : A→ C and g : B → C, the following commutes

sknW ⊗ A⊗B
1⊗f⊗g

//

��

sknW ⊗ C ⊗ C

��

En(A⊕B)
En(f+g)

// En(C)
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where the left vertical arrow is the inclusion from Lemma 6.2.2. Replacing A = B =

Dr0t and C = Y , we extend this to the diagram

C(D)⊗ C(D)
C(Θx)⊗C(Θy)

//

AW
��

C(Y )⊗ C(Y )

AW
��

C(D ⊗D)
C(Θx⊗Θy)

//

��

C(Y ⊗ Y )

��

Σ−nC(sknW ⊗D ⊗D)
1⊗Θx⊗Θy

//

��

Σ−nC(sknW ⊗ Y ⊗ Y )

��

Σ−nC(En(D ⊕D))
En(Θx+Θy)

// Σ−nC(En(Y ))

The composite of the vertical maps on the right is what was used to define the external

Browder operation, so

Er(D)⊗ Er(D) // Er(Y )⊗ Er(Y )

��

Er(En(Y ))

takes ı⊗ ı to λ̃n([x]r, [y]r). Furthermore, the Alexander-Whitney map is particularly

simple on elements in cosimplicial degree 0: AW (id[0]⊗ id[0]) = id[0]⊗ id[0]. So the

vertical maps on the left give

C(D)⊗ C(D) // C(D ⊗D) // Σ−nC(sknW ⊗D ⊗D)

id[0]⊗ id[0]
� // id[0]⊗ id[0]

� // (1 + σ)en ⊗ id[0]⊗ id[0] .

At E1 this coincides with the image of q0,2t+n by Lemma 7.3.3.

Lemma 7.3.3. Let C be a chain complex. Consider the composite

En(C)
En∆−→ En(C ⊕ C)� sknW ⊗ C ⊗ C

where the projection map is essentially the one from Proposition 6.2.2:

En(X ⊕ Y )→ sknW ⊗X ⊗ Y

em ⊗ (x+ y)⊗ (x′ + y′) 7→ em ⊗ x⊗ y′ + σem ⊗ x′ ⊗ y.

Then the homology of the composite sends en ⊗ [c]⊗ [c] to (1 + σ)en ⊗ [c]⊗ [c].
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Proof. Fix a quasi-isomorphism C → HC. The following commutes,

H∗En(C)

∼=
��

// H∗(En(C ⊕ C))

∼=
��

// H∗(sknW ⊗ C ⊗ C)

∼=
��

H∗En(HC) // H∗En(HC ⊕HC) // H∗(sknW ⊗HC ⊗HC)

so it is enough to prove that for a module M ,

H∗(En(M))→ H∗(sknW ⊗M ⊗M)

sends en ⊗m⊗m to (1 + σ)en ⊗m⊗m. This is an easy computation.

Remark. The formula given in Proposition 7.3.2 says that if y happens to be in Br
0,t

then

Q̂t+n
v (x+ y) = Q̂t+n

v (x) + Q̂t+n
v (y)

since [y]r = 0. So if we show that Q̂t+n
v (y) = 0 for y ∈ Br

0,t then we will know that

Q̂t+n
v induces a function

Er
0,t(Y )→ Er

0,2t+n(En(Y )).

7.4 Definition of Operations

The proofs of nearly everything in §6.3 now go through, with perhaps the only

subtle point that the analogue of Lemma 6.3.4 relies on the vanishing statement

Proposition 7.2.4.

Lemma 7.4.1. The homomorphisms Q̂m vanish on Zr−1
−s−1,t+1 for r ≥ 2.

Proof. Write r′ = r − 1, s′ = s + 1, t′ = t + 1 and let y ∈ Zr′

−s′,t′(Y ) ⊂ Zr
s,t(Y ). Then

the following commutes

Drst

Θry !!DDDDDDDD
Θı // Dr′s′t′

Θr
′
y||xxxxxxxx

X
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If r′ ≥ 2, then TheoremF4.4.2 says that Er(En(Dr′s′t′)) is zero on the ranges {−s} ×

[2t, 2t + n − s] and [−2s,min(−s − 1, 2t + n − s)] × {2t} we are interested in. The

diagram

Er(En(Drst))

((PPPPPPPPPPPP
// Er(En(Dr′s′t′))

vvmmmmmmmmmmmm

Er(En(Y ))

commutes and the rightmost composition takes qp,q to zero for (p, q) in the appropriate

range, so all of the Q̂ must vanish on x. If r = 2 then E2(En(D1s′t′)) = 0.

In particular, this shows that the Q̂m vanish on ∂F−s−1, and the proof of the

following is a minor variation of that of the corresponding Proposition in Section 6.3.

Proposition 7.4.2. The homomorphisms Q̂m vanish on ∂F−s.

Lemma 7.4.3. The vertical maps Q̂v vanish on ∂Zr−1
−s+r−1,t−r+2 for r > 2.

Proof. Notice that we may assume that n ≥ s, otherwise we have not defined the

vertical maps and the statement is vacuously true. Let r′ = r − 1, s′ = s + 1 − r,

t′ = t− r + 2. We may assume that y ∈ Zr−1
−s+r−1,t−r+2 has the form

y =
s−1∑

j=s−r+1

yj.

The following diagram commutes

Drst

Θ∂y !!CCCCCCCC
Θ∂ı // Dr′s′t′

Θy
||xxxxxxxxx

Y

Applying Proposition 7.2.2 to (r′, s′, t′), we see that the vector space E2
p,q(EnDr′s′t′) is

one-dimensional for p = −s and q ∈ [2t, 2t − s + n]. Furthermore, Proposition 7.2.4

tell us that all of these classes vanish at page r′ + 1 = r. These are exactly the

bidegrees where we have defined vertical operations, so applying Er(En(−)) to the

above diagram we see that Q̂v(∂y) = 0 on Er.
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Lemma 7.4.4. If r = 2 then the homomorphisms Q̂ vanish on ∂Z1
−s+1,t.

Proof. As in Section 6.3.

Theorem 7.4.5. The maps above define functions

Q̃m
v :Er

−s,t(Y )→ Er
−s,m+t(En(Y )) m ∈ [t, t− s+ n]

Q̃m
h :Er

−s,t(Y )→ Ew
m−s−t,2t(En(Y )) m ∈ [t− s,min(t, t− s+ n)]

where

w =


r m = t− s

2r − 2 m ∈ [t− s+ 1, t− r + 2]

r + t−m m ∈ [t− r + 3, t].

They are homomorphisms unless s = 0 and m = t− s+ n, in which case there is an

error term given by Proposition 7.3.2.

Proof. The only missing ingredient is the vanishing of Q̂m
h on an element ∂y where

y ∈ Zr−1
−s+r−1,t−r+2 is of the form

y =
s−1∑

j=s−r+1

yj.

This is an extension of the proof of Lemma 7.4.3. According to Propositions 7.2.2 and

7.2.4 applied to (r′, s′, t′), part of Corollary 5.4.2 applies in the spectral sequence for

En(Dr′s′t′) to give appropriate vanishing in the range of bidegrees [−2s+1,min(−2s+

n,−s− 1)]× {2t}. In particular,

E2r−2
p,2t (En(Dr′s′t′)) = 0

for p ∈ [−2s+ 1,−r − s+ 2] ∩ I and

Er−s−p
p,2t (En(Dr′s′t′)) = 0

for p ∈ [−r− s+ 3,−s]∩ I, where I = [−2s+ 1,min(−2s+n,−s− 1)]. Furthermore,

Lemma 7.2.3 tells us that

Er
−2s,2t(En(Dr′s′t′)) = 0.

The statement then follows by going from p to m = t+ s+ p.
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Appendix A: Operations in the Target

If X is a cosimplicial space, then the homology spectral sequence for X abuts to

H∗(Tot(X)) (see [2]). We will show in a moment that if X is a C-space, then so is

Tot(X). Before we do this we write down the connection between the algebraic and

geometric quadratic constructions.

Proposition A.6. If Z is a simplicial set, then there is a quasi-isomorphism

E(S∗Z) = W ⊗π (N∗kZ)⊗2 → N∗k(Eπ ×π Z×2).

Proof. Write V = kZ for the simplicial k-module. First, the Eilenberg-Zilber theorem

implies that

1⊗ (shuffle) : W ⊗π N∗V ⊗N∗V → W ⊗π N∗(V ⊗ V )

is a homotopy equivalence (see [4, 7.1,7.2]), where (V ⊗ V )p = Vp ⊗ Vp = k(Zp ×Zp).

One can show that W and N∗kEπ are equal, or just observe that since both

are kπ-free resolutions of ktriv they are kπ-homotopy equivalent. Thus we have a

homotopy equivalence

W ⊗π N∗(V ⊗ V )→ N∗kEπ ⊗π N∗(V ⊗ V ).

Applying the Eilenberg-Zilber Theorem again (see [7, 8.5.3]) we have

N∗kEπ ⊗kπ N∗(V ⊗ V )
shuf−→ N∗(kEπ ⊗kπ V ⊗ V )

is a quasi-isomorphism. Finally we have

kEπp ⊗kπ kZp ⊗ kZp = k(Eπp ×π Zp × Zp)
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coming from the standard comparison of bases:

right π-sets× left π-sets k //

×π
��

right kπ-modules× left kπ-modules

⊗kπ
��

sets
k // k-modules

Letting Sn = sknEπ, we obtain

PropositionF A.7. Let Z be a simplicial set. There is a natural quasi-isomorphism

En(S∗Z)→ S∗(S
n ×π Z×2).

Suppose that X is a cosimplicial C-space, where C is an E∞-operad. Then for

each q and H ⊂ Σm, we have

φqm : C(m)×H (Xq)×m → Xq.

Of course for a map [p]→ [q] the corresponding map Xp → Xq is a map of C spaces,

so in particular

C(m)×H (X•)×m

is a cosimplicial space. Furthermore, the following commutes

C(m)×H (Xp)×m //

��

Xp

��

C(m)×H (Xq)×m // Xq

commutes, so

C(n)×H (X•)×m → X•

is a cosimplicial map. In particular,

Eπ ×π (X ×X)→ X

is a map of cosimplicial spaces.
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If we totalize X, then Tot(X•) = Hom∆(∆•, X•) is again an C space. The map

C(m)× (Tot(X))×m → Tot(X)

is given by

e× f •1 × f •2 × · · · × f •m 7→
(
tn 7→ φnm(e, fn1 (t), fn2 (t), . . . , fnm(t))

)
We wish to examine the triangle

Eπ ×π Tot(X)×2 //

))SSSSSSSSSSSSSS
Tot(X)

Tot(Eπ ×π X×2)

Tot(φ)

66nnnnnnnnnnnn

The map on the down left sends e× f • × g• to the map h• where

hn(t) = e× fn(t)× gn(t).

Since the map going up and to the right is Tot(φ), we see that this diagram commutes.

By Proposition A.6, the spectral sequence for the bottom term is isomorphic to

our spectral sequence E∗(E(S∗(X))) on page 1 and higher. Of course by that same

Proposition

H∗(Eπ ×π Tot(X)×2) ∼= H∗(E(S∗(Tot(X)))),

which is the normal target for external operations originating in H∗(TotX). The

homology of the map

Eπ ×π Tot(X)×2 → Tot(Eπ ×π X×2)

thus takes external operations on Tot(X) to something in the abutment of our spectral

sequence. A question that we have not yet solved is whether the external operations

on Tot(X) map to the external operations we have defined for classes in E∞(S∗(X)).
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Appendix B: CH = HC

Let A• be a cosimplicial object in an abelian category A. We will just write A for

the (unnormalized) Moore chains. Define

Cp(A) = ∩i ker si : Ap → Ap−1

and

Dp(A) =
∑
i>0

di(Ap−1).

Proposition B.8. The submodule D(A) is a subcomplex of A.

Proof. Fix dk(a) where k > 0. Then

d(dk(a)) =
∑
i≥0

(−1)ididka ≡ d0dka mod D(A).

By the cosimplicial identities d0dk = dk+1d0 and k + 1 > 0.

We now dualize the proof of [7, Lemma 8.3.7].

Lemma B.9.

D(A) ∩ C(A) = 0

Proof. Let y =
∑

i>0 d
i(xi). Suppose that y ∈ C(A). If y = 0 there is nothing

to show, so let k be the largest integer with dk(xk) 6= 0. Since y ∈ C(A) we have

sk(y) = 0. A calculation then gives the equality on the right:

y = y − dksk(y) =
∑

0<i<k

di(xi − dk−1sk−1xi).

Induction shows that y = 0.

Lemma B.10.

Dp(A) + Cp(A) = Ap
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Proof. Given an element y ∈ Ap, let m(y) be the smallest number so that sm(y)(y) 6= 0,

or p if y ∈ Cp(A). It is clear that the elements in m−1(p) = Cp are in Dp + Cp.

Suppose, inductively, that

m−1(j + 1) ∪m−1(j + 2) ∪ · · · ∪m−1(p) ⊂ Dp + Cp.

We show that m−1(j) ⊂ Dp + Cp. Let y ∈ m−1(j), so that sj(y) 6= 0 and si(y) = 0

for i < j. Write

y′ = y − dj+1sj(y) ≡ y mod Dp.

Then sj(y′) = sjy − sjdj+1sjy = 0. Furthermore, for i < j,

si(y′) = si(y)− sidj+1sj(y)

= −djsisj(y)

= −djsj−1si(y) = 0.

Thus y′ ∈ Cp +Dp by induction, so y ∈ Cp +Dp as well.

Proposition B.11. A = C(A)⊕D(A)

One consequence of this Proposition is that CA, as we have defined it here, is

isomorphic to C(A) = A/D(A) from the introduction.

Let Y be a cosimplicial chain complex. By definition, ∂• commutes with the

cosimplicial structure maps dk and si, so ∂|C(Y ) lands in C(Y ) and ∂|D(Y ) lands in

D(Y ).

This shows that we have the decomposition

HtY
p = HtC

pY ⊕HtD
pY.

Of course, there is the alternate decomposition given by

(HtY )p = Cp(HtY )⊕Dp(HtY )

that we originally found. Since si is zero on H tCpY , we have HtC
pY ⊂ CpHtY ⊂

HtY
p.
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It is enough to show that

CpHtY ∩HtD
pY = 0

to get equality CpHtY = HtC
pY .

Proposition B.12.

CpHtY ∩HtD
pY = 0

Proof. We imitate the proof of Lemma B.9. Let α be in the intersection. Since

α ∈ HtD
pY , we may write α = [

∑
i>0 d

ixi]. Set y =
∑

i>0 d
ixi, which we assume to

be nonzero. Let k be the largest integer with dkxk 6= 0. Because α ∈ CpHtY , we

know sky is homologous to zero, so y is homologous to y − dksky. But

y − dksky =
∑
k≥i>0

dixi −
∑
k≥i>0

dkskdixi

=
∑
k>i>0

dixi + dkxk − dkskdkxk −
∑
k>i>0

dkskdixi

=
∑
k>i>0

di(xi − dk−1sk−1xk)

so α = [
∑

k>i>0 d
ix′i]. Repeating this tells us that α = 0.

Theorem B.13.

CpHt(Y ) = HtC
p(Y )

Proof. Since CpHt(Y ) ∩ HtD
pY = 0, we have CpHt(Y ) ⊂ HtC

pY . The reverse

inclusion was already discussed.
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