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Our purpose is to explain and explore a new connection between the d-Segal spaces
of Dyckerhoff and Kapranov and the partial groups of Chermak. The former ob-
jects have applications (when d = 2) in representation theory, geometry, combi-
natorics, and elsewhere, and are closely connected to ∞-operads, Span-enriched
A∞-algebras, and operadic categories. The latter objects played a key role in
Chermak’s proof of the existence and uniqueness of centric linking systems for
saturated fusion systems, a major recent result in p-local finite group theory.

Partial groups

Partial groups [C] are akin to groups, but where the n-fold multiplications
G×n → G are replaced by partial functions. These may be concisely described
as ‘reduced spiny symmetric sets’ by [HL], as we now explain. Let Υ be the
category with the same objects [n] = {0, 1, . . . , n} as the simplicial category ∆,
but with arbitrary functions as morphisms. A symmetric (simplicial) set is a
functor X : Υop → Set. Groupoids may be identified with those symmetric sets X
such that the Segal maps

Xn → X1 ×X0
· · ·
n
×X0

X1

are bijections for all n ≥ 2. A spiny symmetric set is a symmetric set X such that
the Segal map is an injection for all n ≥ 2, and a partial group is the same thing as
a spiny symmetric set with X0 a point. The partially-defined n-fold multiplication
is defined by the span X×n

1 ←↩ Xn → X1 where the map on the right is given
by the endpoint-preserving map [1]→ [n]. Every group G can be considered as a
partial group, by identifying it with the associated symmetric set BG.

Every nonempty symmetric subset of BG is a partial group, and many im-
portant partial groups arise in this way. (Though not every partial group may
be embedded into a group.) For example, BcomG ⊆ BG has n-simplices those
[g1| · · · |gn] ∈ BGn = G×n where gigj = gjgi for all i, j (see [AG]). Let us give
another fundamental class of examples:

Example. Suppose G acts on a set V , and U is a subset of V . Then G ‘acts
partially’ on the set U , and we let E be the simplicial set with n-simplices of the
form

u0 u1 · · · un
g1 g2 gn

with ui ∈ U and gi · ui−1 = ui. This E is a groupoid with object set E0 = U , and
we let L ⊆ BG be the image of the map E → BG.

For instance, consider the action of G by conjugation on the set V of subgroups
of G, and let U ⊆ V be the set of nontrivial subgroups in a fixed Sylow p-subgroup
of G. The most important class of partial groups are the localities, which are
modeled on this situation.
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Higher Segal conditions

Higher Segal conditions are certain exactness conditions associated to a simpli-
cial object, generalizing the usual Segal condition which underlies some models for
(∞, 1)-categories. The 2-Segal conditions first appeared in [DK], while the d-Segal
conditions for d > 2 are explored in [P, W].

The d-Segal conditions1 can be phrased in terms of a simplicial object X having
a small number of associated cubes being (homotopy) limit cubes (of dimension
⌈d2⌉ + 1). Write i ≪ j to mean i < j − 1. The 1-Segal condition is that (1) is a
pullback for all n ≥ 2, the 2-Segal condition is that the squares (2) are pullbacks
whenever 0 ≪ i ≪ n, and the 3-Segal condition is that the cube (3) is cartesian
whenever 0≪ i≪ n.

(1)

Xn Xn−1

Xn−1 Xn−2

⌟

d0

dn dn−1

d0

(2)

Xn Xn−1 Xn Xn−1

Xn−1 Xn−2 Xn−1 Xn−2

⌟

di

d0 d0

⌟

di

dn dn−1

di−1 di

(3)

Xn Xn−1

Xn−1 Xn−2

Xn−1 Xn−2

Xn−2 Xn−3

dn

d0

di
d0

di

dn−1

d0

dn−1

di−1

di−1

dn−2

d0

For the 4-Segal condition, one replaces the cubes (3) associated with integers
0≪i≪n by cubes associated with 0≪i≪j(<n) and (0<)i≪j≪n. The 5-Segal
condition concerns the four dimensional cubes associated to 0≪i≪j≪n, and so
on. A d-Segal object is automatically (d+1)-Segal, so one could wonder about the
minimal d (if any) for a simplicial object to be d-Segal. For partial groups, this
will turn out to always be odd. Let us give an indication of why this is true.

Theorem (H–Lynd). If a symmetric set is 2-Segal, then it is 1-Segal.

Proof. The symmetric group action implies that for n ≥ 3, square (1) is isomorphic
to any of the squares in (2). The n = 2 instance of square (1) is a retract of the
n = 3 instance of square (1). Thus (1) is a pullback for all n ≥ 2. □

Definition. The degree of a partial group X, denoted deg(X), is the least positive
integer k such that X is (2k−1)-Segal.

Groups are precisely the degree 1 partial groups. One can show that BcomG is
3-Segal, hence has degree 1 or 2. There are rich families of partial groups (arising
from the example above) attaining arbitrarily high degree.

A primary method for calculating deg(X) is to consider sufficiently nice actions
of X on various sets U . Such an action can be encoded as a map ρ : E → X

1For d odd, we only consider the lower d-Segal conditions.
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satisfying certain properties, where E is a groupoid with E0 = U . (This includes
E → L from our example.) This gives rise to a closure operator A 7→ Ā on E0

defined in terms of simplices ofX which act on all elements of A ⊆ E0. A collection
Γ of nonempty subsets of E0 is independent if the set⋂

Λ⊂Γ
|Γ\Λ|≤1

⋃
Λ

is empty, and h(ρ) is defined to be the size of the largest independent Γ ⊆ 2E0 .

Theorem (H–Lynd). deg(X) ≤ h(ρ).

Corollary. The degree of a finite partial group is finite.

Proof. A partial group X is said to be finite just when X1 is a finite set. Every
finite partial group is finite-dimensional as a symmetric set by [HM], and hence has

finitely many nondegenerate simplices. The canonical map E =
∐

nd(X) Υ
n ρ−→ X

is a nice action of X on the finite set E0. It follows that h(ρ) is finite. □

We have now explained the rudiments of the connection between partial groups
and higher Segal structures, by realizing partial groups as symmetric simplicial
sets. We introduced a new invariant for partial groups – the degree – and a
method for producing upper bounds for this invariant. In future work, we will
calculate the degree for a number of important classes of examples, providing a
source of interesting d-Segal spaces for large d.
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