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Our purpose is to explain and explore a new connection between the d-Segal spaces
of Dyckerhoff and Kapranov and the partial groups of Chermak. The former ob-
jects have applications (when d = 2) in representation theory, geometry, combi-
natorics, and elsewhere, and are closely connected to oo-operads, Span-enriched
Aso-algebras, and operadic categories. The latter objects played a key role in
Chermak’s proof of the existence and uniqueness of centric linking systems for
saturated fusion systems, a major recent result in p-local finite group theory.

PARTIAL GROUPS

Partial groups [C] are akin to groups, but where the n-fold multiplications
G*™ — @ are replaced by partial functions. These may be concisely described
as ‘reduced spiny symmetric sets’ by [HL], as we now explain. Let T be the
category with the same objects [n] = {0,1,...,n} as the simplicial category A,
but with arbitrary functions as morphisms. A symmetric (simplicial) set is a
functor X : T°P — Set. Groupoids may be identified with those symmetric sets X
such that the Segal maps
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are bijections for all n > 2. A spiny symmetric set is a symmetric set X such that
the Segal map is an injection for all n > 2, and a partial group is the same thing as
a spiny symmetric set with X a point. The partially-defined n-fold multiplication
is defined by the span X;" - X,, — X; where the map on the right is given
by the endpoint-preserving map [1] — [n]. Every group G can be considered as a
partial group, by identifying it with the associated symmetric set BG.

Every nonempty symmetric subset of BG is a partial group, and many im-
portant partial groups arise in this way. (Though not every partial group may
be embedded into a group.) For example, BeomG C BG has n-simplices those
[91] - - |lgn]) € BGy = G*™ where g,g; = g;g; for all 4, (see [AG]). Let us give
another fundamental class of examples:

Example. Suppose G acts on a set V, and U is a subset of V. Then G ‘acts
partially’ on the set U, and we let E be the simplicial set with n-simplices of the
form

uogulgﬂun
with u; € U and g; - u;_1 = u;. This E is a groupoid with object set Fy = U, and
we let L C BG be the image of the map F — BG.

For instance, consider the action of G by conjugation on the set V' of subgroups
of G, and let U C V be the set of nontrivial subgroups in a fixed Sylow p-subgroup
of G. The most important class of partial groups are the localities, which are
modeled on this situation.



HIGHER SEGAL CONDITIONS

Higher Segal conditions are certain exactness conditions associated to a simpli-
cial object, generalizing the usual Segal condition which underlies some models for
(00, 1)-categories. The 2-Segal conditions first appeared in [DK], while the d-Segal
conditions for d > 2 are explored in [P, W].

The d-Segal conditions! can be phrased in terms of a simplicial object X having
a small number of associated cubes being (homotopy) limit cubes (of dimension
[4] +1). Write ¢ < j to mean i < j — 1. The 1-Segal condition is that (1) is a
pullback for all n > 2, the 2-Segal condition is that the squares (2) are pullbacks
whenever 0 < ¢ < n, and the 3-Segal condition is that the cube (3) is cartesian
whenever 0 < 7 < n.
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For the 4-Segal condition, one replaces the cubes (3) associated with integers
0<ikn by cubes associated with 0<i<j(<n) and (0<)i<j<n. The 5-Segal
condition concerns the four dimensional cubes associated to 0<i<j<&n, and so
on. A d-Segal object is automatically (d+1)-Segal, so one could wonder about the
minimal d (if any) for a simplicial object to be d-Segal. For partial groups, this
will turn out to always be odd. Let us give an indication of why this is true.

Theorem (H-Lynd). If a symmetric set is 2-Segal, then it is 1-Segal.

Proof. The symmetric group action implies that for n > 3, square (1) is isomorphic
to any of the squares in (2). The n = 2 instance of square (1) is a retract of the
n = 3 instance of square (1). Thus (1) is a pullback for all n > 2. ]

Definition. The degree of a partial group X, denoted deg(X), is the least positive
integer k such that X is (2k—1)-Segal.

Groups are precisely the degree 1 partial groups. One can show that Beon G is
3-Segal, hence has degree 1 or 2. There are rich families of partial groups (arising
from the example above) attaining arbitrarily high degree.

A primary method for calculating deg(X) is to consider sufficiently nice actions
of X on various sets U. Such an action can be encoded as a map p: E — X

IFor d odd, we only consider the lower d-Segal conditions.
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satisfying certain properties, where F is a groupoid with Fy = U. (This includes
E — L from our example.) This gives rise to a closure operator A — A on Ey
defined in terms of simplices of X which act on all elements of A C Ej. A collection
I" of nonempty subsets of Ey is independent if the set
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is empty, and h(p) is defined to be the size of the largest independent " C 2F°,
Theorem (H-Lynd). deg(X) < h(p).
Corollary. The degree of a finite partial group is finite.

Proof. A partial group X is said to be finite just when X; is a finite set. Every
finite partial group is finite-dimensional as a symmetric set by [HM], and hence has

finitely many nondegenerate simplices. The canonical map E = Hnd( X) T2 X
is a nice action of X on the finite set Ey. It follows that h(p) is finite.

We have now explained the rudiments of the connection between partial groups
and higher Segal structures, by realizing partial groups as symmetric simplicial
sets. We introduced a new invariant for partial groups — the degree — and a
method for producing upper bounds for this invariant. In future work, we will
calculate the degree for a number of important classes of examples, providing a
source of interesting d-Segal spaces for large d.
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