
2
Instantaneous Rate of Change:

The Derivative

2.1 The slope of a fun
tion
Suppose that y is a function of x, say y = f(x). It is often necessary to know how sensitive

the value of y is to small changes in x.

EXAMPLE 2.1 Take, for example, y = f(x) =
√

625− x2 (the upper semicircle of

radius 25 centered at the origin). When x = 7, we find that y =
√
625− 49 = 24. Suppose

we want to know how much y changes when x increases a little, say to 7.1 or 7.01.

In the case of a straight line y = mx+b, the slope m = ∆y/∆x measures the change in

y per unit change in x. This can be interpreted as a measure of “sensitivity”; for example,

if y = 100x+ 5, a small change in x corresponds to a change one hundred times as large

in y, so y is quite sensitive to changes in x.

Let us look at the same ratio ∆y/∆x for our function y = f(x) =
√

625− x2 when x

changes from 7 to 7.1. Here ∆x = 7.1− 7 = 0.1 is the change in x, and

∆y = f(x+∆x)− f(x) = f(7.1)− f(7)

=
√

625− 7.12 −
√

625− 72 ≈ 23.9706− 24 = −0.0294.

Thus, ∆y/∆x ≈ −0.0294/0.1 = −0.294. This means that y changes by less than one

third the change in x, so apparently y is not very sensitive to changes in x at x = 7.

We say “apparently” here because we don’t really know what happens between 7 and 7.1.

Perhaps y changes dramatically as x runs through the values from 7 to 7.1, but at 7.1 y

just happens to be close to its value at 7. This is not in fact the case for this particular

function, but we don’t yet know why.
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One way to interpret the above calculation is by reference to a line. We have computed

the slope of the line through (7, 24) and (7.1, 23.9706), called a chord of the circle. In

general, if we draw the chord from the point (7, 24) to a nearby point on the semicircle

(7 + ∆x, f(7 + ∆x)), the slope of this chord is the so-called difference quotient

slope of chord =
f(7 + ∆x)− f(7)

∆x
=

√

625− (7 + ∆x)2 − 24

∆x
.

For example, if x changes only from 7 to 7.01, then the difference quotient (slope of the

chord) is approximately equal to (23.997081 − 24)/0.01 = −0.2919. This is slightly less

steep than the chord from (7, 24) to (7.1, 23.9706).

As the second value 7 + ∆x moves in towards 7, the chord joining (7, f(7)) to (7 +

∆x, f(7 + ∆x)) shifts slightly. As indicated in figure 2.1, as ∆x gets smaller and smaller,

the chord joining (7, 24) to (7+∆x, f(7+∆x)) gets closer and closer to the tangent line

to the circle at the point (7, 24). (Recall that the tangent line is the line that just grazes

the circle at that point, i.e., it doesn’t meet the circle at any second point.) Thus, as ∆x

gets smaller and smaller, the slope ∆y/∆x of the chord gets closer and closer to the slope

of the tangent line. This is actually quite difficult to see when ∆x is small, because of the

scale of the graph. The values of ∆x used for the figure are 1, 5, 10 and 15, not really very

small values. The tangent line is the one that is uppermost at the right hand endpoint.
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Figure 2.1 Chords approximating the tangent line. (AP)

So far we have found the slopes of two chords that should be close to the slope of

the tangent line, but what is the slope of the tangent line exactly? Since the tangent line

touches the circle at just one point, we will never be able to calculate its slope directly,

using two “known” points on the line. What we need is a way to capture what happens

to the slopes of the chords as they get “closer and closer” to the tangent line.
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Instead of looking at more particular values of ∆x, let’s see what happens if we do

some algebra with the difference quotient using just ∆x. The slope of a chord from (7, 24)

to a nearby point is given by

√

625− (7 + ∆x)2 − 24

∆x
=

√

625− (7 + ∆x)2 − 24

∆x

√

625− (7 + ∆x)2 + 24
√

625− (7 + ∆x)2 + 24

=
625− (7 + ∆x)2 − 242

∆x(
√

625− (7 + ∆x)2 + 24)

=
49− 49− 14∆x−∆x2

∆x(
√

625− (7 + ∆x)2 + 24)

=
∆x(−14−∆x)

∆x(
√

625− (7 + ∆x)2 + 24)

=
−14−∆x

√

625− (7 + ∆x)2 + 24

Now, can we tell by looking at this last formula what happens when ∆x gets very close to

zero? The numerator clearly gets very close to −14 while the denominator gets very close to
√

625− 72+24 = 48. Is the fraction therefore very close to −14/48 = −7/24 ∼= −0.29167?

It certainly seems reasonable, and in fact it is true: as ∆x gets closer and closer to zero,

the difference quotient does in fact get closer and closer to −7/24, and so the slope of the

tangent line is exactly −7/24.

What about the slope of the tangent line at x = 12? Well, 12 can’t be all that different

from 7; we just have to redo the calculation with 12 instead of 7. This won’t be hard, but

it will be a bit tedious. What if we try to do all the algebra without using a specific value

for x? Let’s copy from above, replacing 7 by x. We’ll have to do a bit more than that—for
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example, the “24” in the calculation came from
√

625− 72, so we’ll need to fix that too.
√

625− (x+∆x)2 −
√
625− x2

∆x
=

=

√

625− (x+∆x)2 −
√
625− x2

∆x

√

625− (x+∆x)2 +
√
625− x2

√

625− (x+∆x)2 +
√
625− x2

=
625− (x+∆x)2 − 625 + x2

∆x(
√

625− (x+∆x)2 +
√
625− x2)

=
625− x2 − 2x∆x−∆x2 − 625 + x2

∆x(
√

625− (x+∆x)2 +
√
625− x2)

=
∆x(−2x−∆x)

∆x(
√

625− (x+∆x)2 +
√
625− x2)

=
−2x−∆x

√

625− (x+∆x)2 +
√
625− x2

Now what happens when ∆x is very close to zero? Again it seems apparent that the

quotient will be very close to

−2x√
625− x2 +

√
625− x2

=
−2x

2
√
625− x2

=
−x√

625− x2
.

Replacing x by 7 gives −7/24, as before, and now we can easily do the computation for 12

or any other value of x between −25 and 25.

So now we have a single, simple formula, −x/
√

625− x2, that tells us the slope of the

tangent line for any value of x. This slope, in turn, tells us how sensitive the value of y is

to changes in the value of x.

What do we call such a formula? That is, a formula with one variable, so that substi-

tuting an “input” value for the variable produces a new “output” value? This is a function.

Starting with one function,
√

625− x2, we have derived, by means of some slightly nasty

algebra, a new function, −x/
√

625− x2, that gives us important information about the

original function. This new function in fact is called the derivative of the original func-

tion. If the original is referred to as f or y then the derivative is often written f ′ or y′ and

pronounced “f prime” or “y prime”, so in this case we might write f ′(x) = −x/
√

625− x2.

At a particular point, say x = 7, we say that f ′(7) = −7/24 or “f prime of 7 is −7/24” or

“the derivative of f at 7 is −7/24.”

To summarize, we compute the derivative of f(x) by forming the difference quotient

f(x+∆x)− f(x)

∆x
,

which is the slope of a line, then we figure out what happens when ∆x gets very close to

0.
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We should note that in the particular case of a circle, there’s a simple way to find the

derivative. Since the tangent to a circle at a point is perpendicular to the radius drawn

to the point of contact, its slope is the negative reciprocal of the slope of the radius. The

radius joining (0, 0) to (7, 24) has slope 24/7. Hence, the tangent line has slope −7/24. In

general, a radius to the point (x,
√

625− x2) has slope
√

625− x2/x, so the slope of the

tangent line is −x/
√

625− x2, as before. It is NOT always true that a tangent line is

perpendicular to a line from the origin—don’t use this shortcut in any other circumstance.

As above, and as you might expect, for different values of x we generally get different

values of the derivative f ′(x). Could it be that the derivative always has the same value?

This would mean that the slope of f , or the slope of its tangent line, is the same everywhere.

One curve that always has the same slope is a line; it seems odd to talk about the tangent

line to a line, but if it makes sense at all the tangent line must be the line itself. It is not

hard to see that the derivative of f(x) = mx+ b is f ′(x) = m; see exercise 6.

Exercises 2.1.

1. Draw the graph of the function y = f(x) =
√

169− x2 between x = 0 and x = 13. Find the
slope ∆y/∆x of the chord between the points of the circle lying over (a) x = 12 and x = 13,
(b) x = 12 and x = 12.1, (c) x = 12 and x = 12.01, (d) x = 12 and x = 12.001. Now use
the geometry of tangent lines on a circle to find (e) the exact value of the derivative f ′(12).
Your answers to (a)–(d) should be getting closer and closer to your answer to (e). ⇒

2. Use geometry to find the derivative f ′(x) of the function f(x) =
√

625− x2 in the text for
each of the following x: (a) 20, (b) 24, (c) −7, (d) −15. Draw a graph of the upper semicircle,
and draw the tangent line at each of these four points. ⇒

3. Draw the graph of the function y = f(x) = 1/x between x = 1/2 and x = 4. Find the slope
of the chord between (a) x = 3 and x = 3.1, (b) x = 3 and x = 3.01, (c) x = 3 and x = 3.001.
Now use algebra to find a simple formula for the slope of the chord between (3, f(3)) and
(3 + ∆x, f(3 + ∆x)). Determine what happens when ∆x approaches 0. In your graph of
y = 1/x, draw the straight line through the point (3, 1/3) whose slope is this limiting value
of the difference quotient as ∆x approaches 0. ⇒

4. Find an algebraic expression for the difference quotient
(

f(1+∆x)−f(1)
)

/∆x when f(x) =

x2 − (1/x). Simplify the expression as much as possible. Then determine what happens as
∆x approaches 0. That value is f ′(1). ⇒

5. Draw the graph of y = f(x) = x3 between x = 0 and x = 1.5. Find the slope of the chord
between (a) x = 1 and x = 1.1, (b) x = 1 and x = 1.001, (c) x = 1 and x = 1.00001.
Then use algebra to find a simple formula for the slope of the chord between 1 and 1 +∆x.
(Use the expansion (A+B)3 = A3 + 3A2B + 3AB2 +B3.) Determine what happens as ∆x
approaches 0, and in your graph of y = x3 draw the straight line through the point (1, 1)
whose slope is equal to the value you just found. ⇒

6. Find an algebraic expression for the difference quotient (f(x+∆x)− f(x))/∆x when f(x) =
mx + b. Simplify the expression as much as possible. Then determine what happens as ∆x
approaches 0. That value is f ′(x). ⇒
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7. Sketch the unit circle. Discuss the behavior of the slope of the tangent line at various angles
around the circle. Which trigonometric function gives the slope of the tangent line at an
angle θ? Why? Hint: think in terms of ratios of sides of triangles.

8. Sketch the parabola y = x2. For what values of x on the parabola is the slope of the tangent
line positive? Negative? What do you notice about the graph at the point(s) where the sign
of the slope changes from positive to negative and vice versa?2.2 An example

We started the last section by saying, “It is often necessary to know how sensitive the

value of y is to small changes in x.” We have seen one purely mathematical example of

this: finding the “steepness” of a curve at a point is precisely this problem. Here is a more

applied example.

With careful measurement it might be possible to discover that a dropped ball has

height h(t) = h0−kt2, t seconds after it is released. (Here h0 is the initial height of the ball,

when t = 0, and k is some number determined by the experiment.) A natural question is

then, “How fast is the ball going at time t?” We can certainly get a pretty good idea with a

little simple arithmetic. To make the calculation more concrete, let’s say h0 = 100 meters

and k = 4.9 and suppose we’re interested in the speed at t = 2. We know that when t = 2

the height is 100−4 · 4.9 = 80.4. A second later, at t = 3, the height is 100−9 · 4.9 = 55.9,

so in that second the ball has traveled 80.4 − 55.9 = 24.5 meters. This means that the

average speed during that time was 24.5 meters per second. So we might guess that 24.5

meters per second is not a terrible estimate of the speed at t = 2. But certainly we can

do better. At t = 2.5 the height is 100− 4.9(2.5)2 = 69.375. During the half second from

t = 2 to t = 2.5 the ball dropped 80.4 − 69.375 = 11.025 meters, at an average speed of

11.025/(1/2) = 22.05 meters per second; this should be a better estimate of the speed at

t = 2. So it’s clear now how to get better and better approximations: compute average

speeds over shorter and shorter time intervals. Between t = 2 and t = 2.01, for example,

the ball drops 0.19649 meters in one hundredth of a second, at an average speed of 19.649

meters per second.

We can’t do this forever, and we still might reasonably ask what the actual speed

precisely at t = 2 is. If ∆t is some tiny amount of time, what we want to know is what

happens to the average speed (h(2)−h(2+∆t))/∆t as ∆t gets smaller and smaller. Doing
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a bit of algebra:

h(2)− h(2 + ∆t)

∆t
=

80.4− (100− 4.9(2 + ∆t)2)

∆t

=
80.4− 100 + 19.6 + 19.6∆t+ 4.9∆t2

∆t

=
19.6∆t+ 4.9∆t2

∆t

= 19.6 + 4.9∆t

When ∆t is very small, this is very close to 19.6, and indeed it seems clear that as ∆t

goes to zero, the average speed goes to 19.6, so the exact speed at t = 2 is 19.6 meters per

second. This calculation should look very familiar. In the language of the previous section,

we might have started with f(x) = 100− 4.9x2 and asked for the slope of the tangent line

at x = 2. We would have answered that question by computing

f(2 + ∆x)− f(2)

∆x
=

−19.6∆x− 4.9∆x2

∆x
= −19.6− 4.9∆x

The algebra is the same, except that following the pattern of the previous section the

subtraction would be reversed, and we would say that the slope of the tangent line is

−19.6. Indeed, in hindsight, perhaps we should have subtracted the other way even for

the dropping ball. At t = 2 the height is 80.4; one second later the height is 55.9. The

usual way to compute a “distance traveled” is to subtract the earlier position from the

later one, or 55.9− 80.4 = −24.5. This tells us that the distance traveled is 24.5 meters,

and the negative sign tells us that the height went down during the second. If we continue

the original calculation we then get −19.6 meters per second as the exact speed at t = 2.

If we interpret the negative sign as meaning that the motion is downward, which seems

reasonable, then in fact this is the same answer as before, but with even more information,

since the numerical answer contains the direction of motion as well as the speed. Thus,

the speed of the ball is the value of the derivative of a certain function, namely, of the

function that gives the position of the ball. (More properly, this is the velocity of the ball;

velocity is signed speed, that is, speed with a direction indicated by the sign.)

The upshot is that this problem, finding the speed of the ball, is exactly the same

problem mathematically as finding the slope of a curve. This may already be enough

evidence to convince you that whenever some quantity is changing (the height of a curve

or the height of a ball or the size of the economy or the distance of a space probe from

earth or the population of the world) the rate at which the quantity is changing can, in

principle, be computed in exactly the same way, by finding a derivative.
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Exercises 2.2.

1. An object is traveling in a straight line so that its position (that is, distance from some fixed
point) is given by this table:

time (seconds) 0 1 2 3

distance (meters) 0 10 25 60

Find the average speed of the object during the following time intervals: [0, 1], [0, 2], [0, 3],
[1, 2], [1, 3], [2, 3]. If you had to guess the speed at t = 2 just on the basis of these, what
would you guess? ⇒

2. Let y = f(t) = t2, where t is the time in seconds and y is the distance in meters that an
object falls on a certain airless planet. Draw a graph of this function between t = 0 and
t = 3. Make a table of the average speed of the falling object between (a) 2 sec and 3 sec,
(b) 2 sec and 2.1 sec, (c) 2 sec and 2.01 sec, (d) 2 sec and 2.001 sec. Then use algebra to find
a simple formula for the average speed between time 2 and time 2 + ∆t. (If you substitute
∆t = 1, 0.1, 0.01, 0.001 in this formula you should again get the answers to parts (a)–(d).)
Next, in your formula for average speed (which should be in simplified form) determine what
happens as ∆t approaches zero. This is the instantaneous speed. Finally, in your graph
of y = t2 draw the straight line through the point (2, 4) whose slope is the instantaneous
velocity you just computed; it should of course be the tangent line. ⇒

3. If an object is dropped from an 80-meter high window, its height y above the ground at time
t seconds is given by the formula y = f(t) = 80−4.9t2. (Here we are neglecting air resistance;
the graph of this function was shown in figure 1.1.) Find the average velocity of the falling
object between (a) 1 sec and 1.1 sec, (b) 1 sec and 1.01 sec, (c) 1 sec and 1.001 sec. Now use
algebra to find a simple formula for the average velocity of the falling object between 1 sec
and 1 +∆t sec. Determine what happens to this average velocity as ∆t approaches 0. That
is the instantaneous velocity at time t = 1 second (it will be negative, because the object is
falling). ⇒2.3 Limits

In the previous two sections we computed some quantities of interest (slope, velocity) by

seeing that some expression “goes to” or “approaches” or “gets really close to” a particular

value. In the examples we saw, this idea may have been clear enough, but it is too fuzzy

to rely on in more difficult circumstances. In this section we will see how to make the idea

more precise.

There is an important feature of the examples we have seen. Consider again the

formula
−19.6∆x− 4.9∆x2

∆x
.

We wanted to know what happens to this fraction as “∆x goes to zero.” Because we were

able to simplify the fraction, it was easy to see the answer, but it was not quite as simple
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as “substituting zero for ∆x,” as that would give

−19.6 · 0− 4.9 · 0
0

,

which is meaningless. The quantity we are really interested in does not make sense “at

zero,” and this is why the answer to the original problem (finding a velocity or a slope)

was not immediately obvious. In other words, we are generally going to want to figure

out what a quantity “approaches” in situations where we can’t merely plug in a value. If

you would like to think about a hard example (which we will analyze later) consider what

happens to (sinx)/x as x approaches zero.

EXAMPLE 2.2 Does
√
x approach 1.41 as x approaches 2? In this case it is possible

to compute the actual value
√
2 to a high precision to answer the question. But since

in general we won’t be able to do that, let’s not. We might start by computing
√
x for

values of x close to 2, as we did in the previous sections. Here are some values:
√
2.05 =

1.431782106,
√
2.04 = 1.428285686,

√
2.03 = 1.424780685,

√
2.02 = 1.421267040,

√
2.01 =

1.417744688,
√
2.005 = 1.415980226,

√
2.004 = 1.415627070,

√
2.003 = 1.415273825,√

2.002 = 1.414920492,
√
2.001 = 1.414567072. So it looks at least possible that indeed

these values “approach” 1.41—already
√
2.001 is quite close. If we continue this process,

however, at some point we will appear to “stall.” In fact,
√
2 = 1.414213562 . . ., so we will

never even get as far as 1.4142, no matter how long we continue the sequence.

So in a fuzzy, everyday sort of sense, it is true that
√
x “gets close to” 1.41, but it

does not “approach” 1.41 in the sense we want. To compute an exact slope or an exact

velocity, what we want to know is that a given quantity becomes “arbitrarily close” to a

fixed value, meaning that the first quantity can be made “as close as we like” to the fixed

value. Consider again the quantities

−19.6∆x− 4.9∆x2

∆x
= −19.6− 4.9∆x.

These two quantities are equal as long as ∆x is not zero; if ∆x is zero, the left hand

quantity is meaningless, while the right hand one is −19.6. Can we say more than we

did before about why the right hand side “approaches” −19.6, in the desired sense? Can

we really make it “as close as we want” to −19.6? Let’s try a test case. Can we make

−19.6− 4.9∆x within one millionth (0.000001) of −19.6? The values within a millionth of

−19.6 are those in the interval (−19.600001,−19.599999). As ∆x approaches zero, does

−19.6− 4.9∆x eventually reside inside this interval? If ∆x is positive, this would require

that −19.6 − 4.9∆x > −19.600001. This is something we can manipulate with a little
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algebra:

−19.6− 4.9∆x > −19.600001

−4.9∆x > −0.000001

∆x < −0.000001/− 4.9

∆x < 0.0000002040816327 . . .

Thus, we can say with certainty that if ∆x is positive and less than 0.0000002, then

∆x < 0.0000002040816327 . . . and so −19.6− 4.9∆x > −19.600001. We could do a similar

calculation if ∆x is negative.

So now we know that we can make −19.6− 4.9∆x within one millionth of −19.6. But

can we make it “as close as we want”? In this case, it is quite simple to see that the answer

is yes, by modifying the calculation we’ve just done. It may be helpful to think of this as

a game. I claim that I can make −19.6− 4.9∆x as close as you desire to −19.6 by making

∆x “close enough” to zero. So the game is: you give me a number, like 10−6, and I have

to come up with a number representing how close ∆x must be to zero to guarantee that

−19.6− 4.9∆x is at least as close to −19.6 as you have requested.

Now if we actually play this game, I could redo the calculation above for each new

number you provide. What I’d like to do is somehow see that I will always succeed, and

even more, I’d like to have a simple strategy so that I don’t have to do all that algebra

every time. A strategy in this case would be a formula that gives me a correct answer no

matter what you specify. So suppose the number you give me is ǫ. How close does ∆x

have to be to zero to guarantee that −19.6− 4.9∆x is in (−19.6− ǫ,−19.6 + ǫ)? If ∆x is

positive, we need:

−19.6− 4.9∆x > −19.6− ǫ

−4.9∆x > −ǫ

∆x < −ǫ/− 4.9

∆x < ǫ/4.9

So if I pick any number δ that is less than ǫ/4.9, the algebra tells me that whenever ∆x < δ

then ∆x < ǫ/4.9 and so −19.6 − 4.9∆x is within ǫ of −19.6. (This is exactly what I did

in the example: I picked δ = 0.0000002 < 0.0000002040816327 . . ..) A similar calculation

again works for negative ∆x. The important fact is that this is now a completely general

result—it shows that I can always win, no matter what “move” you make.

Now we can codify this by giving a precise definition to replace the fuzzy, “gets closer

and closer” language we have used so far. Henceforward, we will say something like “the

limit of (−19.6∆x−4.9∆x2)/∆x as ∆x goes to zero is −19.6,” and abbreviate this mouthful
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as

lim
∆x→0

−19.6∆x− 4.9∆x2

∆x
= −19.6.

Here is the actual, official definition of “limit”.

DEFINITION 2.3 Limit Suppose f is a function. We say that lim
x→a

f(x) = L if for

every ǫ > 0 there is a δ > 0 so that whenever 0 < |x− a| < δ, |f(x)− L| < ǫ.

The ǫ and δ here play exactly the role they did in the preceding discussion. The

definition says, in a very precise way, that f(x) can be made as close as desired to L

(that’s the |f(x) − L| < ǫ part) by making x close enough to a (the 0 < |x − a| < δ

part). Note that we specifically make no mention of what must happen if x = a, that is,

if |x− a| = 0. This is because in the cases we are most interested in, substituting a for x

doesn’t even make sense.

Make sure you are not confused by the names of important quantities. The generic

definition talks about f(x), but the function and the variable might have other names. In

the discussion above, the function we analyzed was

−19.6∆x− 4.9∆x2

∆x
.

and the variable of the limit was not x but ∆x. The x was the variable of the original

function; when we were trying to compute a slope or a velocity, x was essentially a fixed

quantity, telling us at what point we wanted the slope. (In the velocity problem, it was

literally a fixed quantity, as we focused on the time 2.) The quantity a of the definition

in all the examples was zero: we were always interested in what happened as ∆x became

very close to zero.

Armed with a precise definition, we can now prove that certain quantities behave in a

particular way. The bad news is that even proofs for simple quantities can be quite tedious

and complicated; the good news is that we rarely need to do such proofs, because most

expressions act the way you would expect, and this can be proved once and for all.

EXAMPLE 2.4 Let’s show carefully that lim
x→2

x + 4 = 6. This is not something we

“need” to prove, since it is “obviously” true. But if we couldn’t prove it using our official

definition there would be something very wrong with the definition.

As is often the case in mathematical proofs, it helps to work backwards. We want to

end up showing that under certain circumstances x+ 4 is close to 6; precisely, we want to

show that |x+ 4− 6| < ǫ, or |x− 2| < ǫ. Under what circumstances? We want this to be

true whenever 0 < |x− 2| < δ. So the question becomes: can we choose a value for δ that
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guarantees that 0 < |x− 2| < δ implies |x− 2| < ǫ? Of course: no matter what ǫ is, δ = ǫ

works.

So it turns out to be very easy to prove something “obvious,” which is nice. It doesn’t

take long before things get trickier, however.

EXAMPLE 2.5 It seems clear that lim
x→2

x2 = 4. Let’s try to prove it. We will want to

be able to show that |x2−4| < ǫ whenever 0 < |x−2| < δ, by choosing δ carefully. Is there

any connection between |x−2| and |x2−4|? Yes, and it’s not hard to spot, but it is not so

simple as the previous example. We can write |x2−4| = |(x+2)(x−2)|. Now when |x−2|
is small, part of |(x+2)(x− 2)| is small, namely (x− 2). What about (x+2)? If x is close

to 2, (x+2) certainly can’t be too big, but we need to somehow be precise about it. Let’s

recall the “game” version of what is going on here. You get to pick an ǫ and I have to

pick a δ that makes things work out. Presumably it is the really tiny values of ǫ I need to

worry about, but I have to be prepared for anything, even an apparently “bad” move like

ǫ = 1000. I expect that ǫ is going to be small, and that the corresponding δ will be small,

certainly less than 1. If δ ≤ 1 then |x+2| < 5 when |x− 2| < δ (because if x is within 1 of

2, then x is between 1 and 3 and x+2 is between 3 and 5). So then I’d be trying to show

that |(x+ 2)(x− 2)| < 5|x− 2| < ǫ. So now how can I pick δ so that |x− 2| < δ implies

5|x − 2| < ǫ? This is easy: use δ = ǫ/5, so 5|x − 2| < 5(ǫ/5) = ǫ. But what if the ǫ you

choose is not small? If you choose ǫ = 1000, should I pick δ = 200? No, to keep things

“sane” I will never pick a δ bigger than 1. Here’s the final “game strategy:” When you

pick a value for ǫ I will pick δ = ǫ/5 or δ = 1, whichever is smaller. Now when |x− 2| < δ,

I know both that |x+ 2| < 5 and that |x− 2| < ǫ/5. Thus |(x+ 2)(x− 2)| < 5(ǫ/5) = ǫ.

This has been a long discussion, but most of it was explanation and scratch work. If

this were written down as a proof, it would be quite short, like this:

Proof that lim
x→2

x2 = 4. Given any ǫ, pick δ = ǫ/5 or δ = 1, whichever is smaller. Then

when |x−2| < δ, |x+2| < 5 and |x−2| < ǫ/5. Hence |x2−4| = |(x+2)(x−2)| < 5(ǫ/5) =

ǫ.

It probably seems obvious that lim
x→2

x2 = 4, and it is worth examining more closely

why it seems obvious. If we write x2 = x · x, and ask what happens when x approaches 2,

we might say something like, “Well, the first x approaches 2, and the second x approaches

2, so the product must approach 2 · 2.” In fact this is pretty much right on the money,

except for that word “must.” Is it really true that if x approaches a and y approaches b

then xy approaches ab? It is, but it is not really obvious, since x and y might be quite

complicated. The good news is that we can see that this is true once and for all, and then
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we don’t have to worry about it ever again. When we say that x might be “complicated”

we really mean that in practice it might be a function. Here is then what we want to know:

THEOREM 2.6 Suppose lim
x→a

f(x) = L and lim
x→a

g(x) = M . Then

limx→a f(x)g(x) = LM .

Proof. We have to use the official definition of limit to make sense of this. So given any

ǫ we need to find a δ so that 0 < |x − a| < δ implies |f(x)g(x)− LM | < ǫ. What do we

have to work with? We know that we can make f(x) close to L and g(x) close to M , and

we have to somehow connect these facts to make f(x)g(x) close to LM .

We use, as is so often the case, a little algebraic trick:

|f(x)g(x)− LM | = |f(x)g(x)− f(x)M + f(x)M − LM |
= |f(x)(g(x)−M) + (f(x)− L)M |
≤ |f(x)(g(x)−M)|+ |(f(x)− L)M |
= |f(x)||g(x)−M |+ |f(x)− L||M |.

This is all straightforward except perhaps for the “≤”. That is an example of the triangle

inequality, which says that if a and b are any real numbers then |a+ b| ≤ |a|+ |b|. If you
look at a few examples, using positive and negative numbers in various combinations for

a and b, you should quickly understand why this is true; we will not prove it formally.

Since lim
x→a

f(x) = L, there is a value δ1 so that 0 < |x− a| < δ1 implies |f(x)− L| <
|ǫ/(2M)|, This means that 0 < |x − a| < δ1 implies |f(x) − L||M | < ǫ/2. You can see

where this is going: if we can make |f(x)||g(x)−M | < ǫ/2 also, then we’ll be done.

We can make |g(x) − M | smaller than any fixed number by making x close enough

to a; unfortunately, ǫ/(2f(x)) is not a fixed number, since x is a variable. Here we need

another little trick, just like the one we used in analyzing x2. We can find a δ2 so that

|x− a| < δ2 implies that |f(x)− L| < 1, meaning that L− 1 < f(x) < L+ 1. This means

that |f(x)| < N , where N is either |L− 1| or |L+ 1|, depending on whether L is negative

or positive. The important point is that N doesn’t depend on x. Finally, we know that

there is a δ3 so that 0 < |x − a| < δ3 implies |g(x) −M | < ǫ/(2N). Now we’re ready to

put everything together. Let δ be the smallest of δ1, δ2, and δ3. Then |x− a| < δ implies

that |f(x)− L| < |ǫ/(2M)|, |f(x)| < N , and |g(x)−M | < ǫ/(2N). Then

|f(x)g(x)− LM | ≤ |f(x)||g(x)−M |+ |f(x)− L||M |

< N
ǫ

2N
+
∣

∣

∣

ǫ

2M

∣

∣

∣
|M |

=
ǫ

2
+

ǫ

2
= ǫ.

This is just what we needed, so by the official definition, lim
x→a

f(x)g(x) = LM .
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A handful of such theorems give us the tools to compute many limits without explicitly

working with the definition of limit.

THEOREM 2.7 Suppose that lim
x→a

f(x) = L and lim
x→a

g(x) = M and k is some constant.

Then
lim
x→a

kf(x) = k lim
x→a

f(x) = kL

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x) = L+M

lim
x→a

(f(x)− g(x)) = lim
x→a

f(x)− lim
x→a

g(x) = L−M

lim
x→a

(f(x)g(x)) = lim
x→a

f(x) · lim
x→a

g(x) = LM

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
=

L

M
, if M is not 0

Roughly speaking, these rules say that to compute the limit of an algebraic expression,

it is enough to compute the limits of the “innermost bits” and then combine these limits.

This often means that it is possible to simply plug in a value for the variable, since

lim
x→a

x = a.

EXAMPLE 2.8 Compute lim
x→1

x2 − 3x+ 5

x− 2
. If we apply the theorem in all its gory

detail, we get

lim
x→1

x2 − 3x+ 5

x− 2
=

limx→1(x
2 − 3x+ 5)

limx→1(x− 2)

=
(limx→1 x

2)− (limx→1 3x) + (limx→1 5)

(limx→1 x)− (limx→1 2)

=
(limx→1 x)

2 − 3(limx→1 x) + 5

(limx→1 x)− 2

=
12 − 3 · 1 + 5

1− 2

=
1− 3 + 5

−1
= −3

It is worth commenting on the trivial limit lim
x→1

5. From one point of view this might

seem meaningless, as the number 5 can’t “approach” any value, since it is simply a fixed

number. But 5 can, and should, be interpreted here as the function that has value 5
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everywhere, f(x) = 5, with graph a horizontal line. From this point of view it makes sense

to ask what happens to the height of the function as x approaches 1.

Of course, as we’ve already seen, we’re primarily interested in limits that aren’t so easy,

namely, limits in which a denominator approaches zero. There are a handful of algebraic

tricks that work on many of these limits.

EXAMPLE 2.9 Compute lim
x→1

x2 + 2x− 3

x− 1
. We can’t simply plug in x = 1 because

that makes the denominator zero. However:

lim
x→1

x2 + 2x− 3

x− 1
= lim

x→1

(x− 1)(x+ 3)

x− 1

= lim
x→1

(x+ 3) = 4

While theorem 2.7 is very helpful, we need a bit more to work easily with limits. Since

the theorem applies when some limits are already known, we need to know the behavior of

some functions that cannot themselves be constructed from the simple arithmetic opera-

tions of the theorem, such as
√
x. Also, there is one other extraordinarily useful way to put

functions together: composition. If f(x) and g(x) are functions, we can form two functions

by composition: f(g(x)) and g(f(x)). For example, if f(x) =
√
x and g(x) = x2 + 5, then

f(g(x)) =
√

x2 + 5 and g(f(x)) = (
√
x)2 +5 = x+5. Here is a companion to theorem 2.7

for composition:

THEOREM 2.10 Suppose that lim
x→a

g(x) = L and lim
x→L

f(x) = f(L). Then

lim
x→a

f(g(x)) = f(L).

Note the special form of the condition on f : it is not enough to know that lim
x→L

f(x) =

M , though it is a bit tricky to see why. Many of the most familiar functions do have this

property, and this theorem can therefore be applied. For example:

THEOREM 2.11 Suppose that n is a positive integer. Then

lim
x→a

n

√
x = n

√
a,

provided that a is positive if n is even.

This theorem is not too difficult to prove from the definition of limit.
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Another of the most common algebraic tricks was used in section 2.1. Here’s another

example:

EXAMPLE 2.12 Compute lim
x→−1

√
x+ 5− 2

x+ 1
.

lim
x→−1

√
x+ 5− 2

x+ 1
= lim

x→−1

√
x+ 5− 2

x+ 1

√
x+ 5 + 2√
x+ 5 + 2

= lim
x→−1

x+ 5− 4

(x+ 1)(
√
x+ 5 + 2)

= lim
x→−1

x+ 1

(x+ 1)(
√
x+ 5 + 2)

= lim
x→−1

1√
x+ 5 + 2

=
1

4

At the very last step we have used theorems 2.10 and 2.11.

Occasionally we will need a slightly modified version of the limit definition. Consider

the function f(x) =
√

1− x2, the upper half of the unit circle. What can we say about

lim
x→1

f(x)? It is apparent from the graph of this familiar function that as x gets close to 1

from the left, the value of f(x) gets close to zero. It does not even make sense to ask what

happens as x approaches 1 from the right, since f(x) is not defined there. The definition

of the limit, however, demands that f(1 + ∆x) be close to f(1) whether ∆x is positive or

negative. Sometimes the limit of a function exists from one side or the other (or both) even

though the limit does not exist. Since it is useful to be able to talk about this situation,

we introduce the concept of one sided limit:

DEFINITION 2.13 One-sided limit Suppose that f(x) is a function. We say

that lim
x→a−

f(x) = L if for every ǫ > 0 there is a δ > 0 so that whenever 0 < a − x < δ,

|f(x)− L| < ǫ. We say that limx→a+ f(x) = L if for every ǫ > 0 there is a δ > 0 so that

whenever 0 < x− a < δ, |f(x)− L| < ǫ.

Usually lim
x→a−

f(x) is read “the limit of f(x) from the left” and lim
x→a+

f(x) is read “the

limit of f(x) from the right”.

EXAMPLE 2.14 Discuss lim
x→0

x

|x| , lim
x→0−

x

|x| , and lim
x→0+

x

|x| .

The function f(x) = x/|x| is undefined at 0; when x > 0, |x| = x and so f(x) = 1;

when x < 0, |x| = −x and f(x) = −1. Thus lim
x→0−

x

|x| = lim
x→0−

−1 = −1 while lim
x→0+

x

|x| =
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lim
x→0+

1 = 1. The limit of f(x) must be equal to both the left and right limits; since they

are different, the limit lim
x→0

x

|x| does not exist.

Exercises 2.3.

Compute the limits. If a limit does not exist, explain why.

1. lim
x→3

x2 + x− 12

x− 3
⇒ 2. lim

x→1

x2 + x− 12

x− 3
⇒

3. lim
x→−4

x2 + x− 12

x− 3
⇒ 4. lim

x→2

x2 + x− 12

x− 2
⇒

5. lim
x→1

√
x+ 8− 3

x− 1
⇒ 6. lim

x→0+

√

1

x
+ 2−

√

1

x
. ⇒

7. lim
x→2

3 ⇒ 8. lim
x→4

3x3 − 5x ⇒

9. lim
x→0

4x− 5x2

x− 1
⇒ 10. lim

x→1

x2 − 1

x− 1
⇒

11. lim
x→0+

√
2− x2

x
⇒ 12. lim

x→0+

√
2− x2

x+ 1
⇒

13. lim
x→a

x3 − a3

x− a
⇒ 14. lim

x→2

(x2 + 4)3 ⇒

15. lim
x→1

{

x− 5 x 6= 1,
7 x = 1.

⇒

16. lim
x→0

x sin

(

1

x

)

(Hint: Use the fact that | sin a| < 1 for any real number a. You should

probably use the definition of a limit here.) ⇒
17. Give an ǫ–δ proof, similar to example 2.4, of the fact that lim

x→4

(2x− 5) = 3.
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18. Evaluate the expressions by reference to this graph:

x
K4 K2 0 2 4 6

K2

2

4

6

8

10

(a) lim
x→4

f(x) (b) lim
x→−3

f(x) (c) lim
x→0

f(x)

(d) lim
x→0−

f(x) (e) lim
x→0+

f(x) (f) f(−2)

(g) lim
x→2−

f(x) (h) lim
x→−2−

f(x) (i) lim
x→0

f(x+ 1)

(j) f(0) (k) lim
x→1−

f(x− 4) (l) lim
x→0+

f(x− 2)

⇒
19. Use a calculator to estimate lim

x→0

sinx

x
.

20. Use a calculator to estimate lim
x→0

tan(3x)

tan(5x)
.2.4 The Derivative Fun
tion

We have seen how to create, or derive, a new function f ′(x) from a function f(x), and

that this new function carries important information. In one example we saw that f ′(x)

tells us how steep the graph of f(x) is; in another we saw that f ′(x) tells us the velocity

of an object if f(x) tells us the position of the object at time x. As we said earlier, this

same mathematical idea is useful whenever f(x) represents some changing quantity and we

want to know something about how it changes, or roughly, the “rate” at which it changes.

Most functions encountered in practice are built up from a small collection of “primitive”

functions in a few simple ways, for example, by adding or multiplying functions together
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to get new, more complicated functions. To make good use of the information provided

by f ′(x) we need to be able to compute it for a variety of such functions.

We will begin to use different notations for the derivative of a function. While initially

confusing, each is often useful so it is worth maintaining multiple versions of the same

thing.

Consider again the function f(x) =
√

625− x2. We have computed the derivative

f ′(x) = −x/
√

625− x2, and have already noted that if we use the alternate notation

y =
√

625− x2 then we might write y′ = −x/
√

625− x2. Another notation is quite

different, and in time it will become clear why it is often a useful one. Recall that to

compute the the derivative of f we computed

lim
∆x→0

√

625− (7 + ∆x)2 − 24

∆x
.

The denominator here measures a distance in the x direction, sometimes called the “run”,

and the numerator measures a distance in the y direction, sometimes called the “rise,” and

“rise over run” is the slope of a line. Recall that sometimes such a numerator is abbreviated

∆y, exchanging brevity for a more detailed expression. So in general, a derivative is given

by

y′ = lim
∆x→0

∆y

∆x
.

To recall the form of the limit, we sometimes say instead that

dy

dx
= lim

∆x→0

∆y

∆x
.

In other words, dy/dx is another notation for the derivative, and it reminds us that it is

related to an actual slope between two points. This notation is called Leibniz notation,

after Gottfried Leibniz, who developed the fundamentals of calculus independently, at

about the same time that Isaac Newton did. Again, since we often use f and f(x) to mean

the original function, we sometimes use df/dx and df(x)/dx to refer to the derivative. If

the function f(x) is written out in full we often write the last of these something like this

f ′(x) =
d

dx

√

625− x2

with the function written to the side, instead of trying to fit it into the numerator.

EXAMPLE 2.15 Find the derivative of y = f(t) = t2.
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We compute

y′ = lim
∆t→0

∆y

∆t
= lim

∆t→0

(t+∆t)2 − t2

∆t

= lim
∆t→0

t2 + 2t∆t+∆t2 − t2

∆t

= lim
∆t→0

2t∆t+∆t2

∆t

= lim
∆t→0

2t+∆t = 2t.

Remember that ∆t is a single quantity, not a “∆” times a “t”, and so ∆t2 is (∆t)2 not

∆(t2).

EXAMPLE 2.16 Find the derivative of y = f(x) = 1/x.

The computation:

y′ = lim
∆x→0

∆y

∆x
= lim

∆x→0

1
x+∆x

− 1
x

∆x

= lim
∆x→0

x
x(x+∆x) − x+∆x

x(x+∆x)

∆x

= lim
∆x→0

x−(x+∆x)
x(x+∆x)

∆x

= lim
∆x→0

x− x−∆x

x(x+∆x)∆x

= lim
∆x→0

−∆x

x(x+∆x)∆x

= lim
∆x→0

−1

x(x+∆x)
=

−1

x2

Note. If you happen to know some “derivative formulas” from an earlier course, for

the time being you should pretend that you do not know them. In examples like the

ones above and the exercises below, you are required to know how to find the derivative

formula starting from basic principles. We will later develop some formulas so that we do

not always need to do such computations, but we will continue to need to know how to do

the more involved computations.

Sometimes one encounters a point in the domain of a function y = f(x) where there

is no derivative, because there is no tangent line. In order for the notion of the tangent

line at a point to make sense, the curve must be “smooth” at that point. This means that

if you imagine a particle traveling at some steady speed along the curve, then the particle
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does not experience an abrupt change of direction. There are two types of situations you

should be aware of—corners and cusps—where there’s a sudden change of direction and

hence no derivative.

EXAMPLE 2.17 Discuss the derivative of the absolute value function y = f(x) = |x|.
If x is positive, then this is the function y = x, whose derivative is the constant 1.

(Recall that when y = f(x) = mx+ b, the derivative is the slope m.) If x is negative, then

we’re dealing with the function y = −x, whose derivative is the constant −1. If x = 0,

then the function has a corner, i.e., there is no tangent line. A tangent line would have

to point in the direction of the curve—but there are two directions of the curve that come

together at the origin. We can summarize this as

y′ =

{

1 if x > 0;
−1 if x < 0;
undefined if x = 0.

EXAMPLE 2.18

Discuss the derivative of the function y = x2/3, shown in figure 2.2. We will later see

how to compute this derivative; for now we use the fact that y′ = (2/3)x−1/3. Visually this

looks much like the absolute value function, but it technically has a cusp, not a corner. The

absolute value function has no tangent line at 0 because there are (at least) two obvious

contenders—the tangent line of the left side of the curve and the tangent line of the right

side. The function y = x2/3 does not have a tangent line at 0, but unlike the absolute value

function it can be said to have a single direction: as we approach 0 from either side the

tangent line becomes closer and closer to a vertical line; the curve is vertical at 0. But as

before, if you imagine traveling along the curve, an abrupt change in direction is required

at 0: a full 180 degree turn.

0
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Figure 2.2 A cusp on x2/3.
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In practice we won’t worry much about the distinction between these examples; in both

cases the function has a “sharp point” where there is no tangent line and no derivative.

Exercises 2.4.

1. Find the derivative of y = f(x) =
√

169− x2. ⇒
2. Find the derivative of y = f(t) = 80− 4.9t2. ⇒
3. Find the derivative of y = f(x) = x2 − (1/x). ⇒
4. Find the derivative of y = f(x) = ax2 + bx + c (where a, b, and c are constants). ⇒
5. Find the derivative of y = f(x) = x3. ⇒
6. Shown is the graph of a function f(x). Sketch the graph of f ′(x) by estimating the derivative

at a number of points in the interval: estimate the derivative at regular intervals from one
end of the interval to the other, and also at “special” points, as when the derivative is zero.
Make sure you indicate any places where the derivative does not exist.
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7. Shown is the graph of a function f(x). Sketch the graph of f ′(x) by estimating the derivative
at a number of points in the interval: estimate the derivative at regular intervals from one
end of the interval to the other, and also at “special” points, as when the derivative is zero.
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Make sure you indicate any places where the derivative does not exist.
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8. Find the derivative of y = f(x) = 2/
√
2x+ 1 ⇒

9. Find the derivative of y = g(t) = (2t− 1)/(t+ 2) ⇒
10. Find an equation for the tangent line to the graph of f(x) = 5− x− 3x2 at the point

x = 2 ⇒
11. Find a value for a so that the graph of f(x) = x2 + ax − 3 has a horizontal tangent

line at x = 4. ⇒2.5 Adje
tives For Fun
tions
As we have defined it in Section 1.3, a function is a very general object. At this point, it

is useful to introduce a collection of adjectives to describe certain kinds of functions; these

adjectives name useful properties that functions may have. Consider the graphs of the

functions in Figure 2.3. It would clearly be useful to have words to help us describe the

distinct features of each of them. We will point out and define a few adjectives (there are

many more) for the functions pictured here. For the sake of the discussion, we will assume

that the graphs do not exhibit any unusual behavior off-stage (i.e., outside the view of the

graphs).

Functions. Each graph in Figure 2.3 certainly represents a function—since each passes

the vertical line test. In other words, as you sweep a vertical line across the graph of each

function, the line never intersects the graph more than once. If it did, then the graph

would not represent a function.

Bounded. The graph in (c) appears to approach zero as x goes to both positive and

negative infinity. It also never exceeds the value 1 or drops below the value 0. Because the
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(d)

Figure 2.3 Function Types: (a) a discontinuous function, (b) a continuous function, (c)
a bounded, differentiable function, (d) an unbounded, differentiable function

graph never increases or decreases without bound, we say that the function represented by

the graph in (c) is a bounded function.

DEFINITION 2.19 Bounded A function f is bounded if there is a number M such

that |f(x)| < M for every x in the domain of f .

For the function in (c), one such choice for M would be 10. However, the smallest

(optimal) choice would be M = 1. In either case, simply finding an M is enough to

establish boundedness. No such M exists for the hyperbola in (d) and hence we can say

that it is unbounded.

Continuity. The graphs shown in (b) and (c) both represent continuous functions.

Geometrically, this is because there are no jumps in the graphs. That is, if you pick a

point on the graph and approach it from the left and right, the values of the function
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approach the value of the function at that point. For example, we can see that this is not

true for function values near x = −1 on the graph in (a) which is not continuous at that

location.

DEFINITION 2.20 Continuous at a Point A function f is continuous at a point

a if lim
x→a

f(x) = f(a).

DEFINITION 2.21 Continuous A function f is continuous if it is continuous at

every point in its domain.

Strangely, we can also say that (d) is continuous even though there is a vertical asymp-

tote. A careful reading of the definition of continuous reveals the phrase “at every point

in its domain.” Because the location of the asymptote, x = 0, is not in the domain of

the function, and because the rest of the function is well-behaved, we can say that (d) is

continuous.

Differentiability. Now that we have introduced the derivative of a function at a point,

we can begin to use the adjective differentiable. We can see that the tangent line is well-

defined at every point on the graph in (c). Therefore, we can say that (c) is a differentiable

function.

DEFINITION 2.22 Differentiable at a Point A function f is differentiable at

point a if f ′(a) exists.

DEFINITION 2.23 Differentiable A function f is differentiable if is differentiable

at every point (excluding endpoints and isolated points in the domain of f) in the domain

of f .

Take note that, for technical reasons not discussed here, both of these definitions

exclude endpoints and isolated points in the domain from consideration.

We now have a collection of adjectives to describe the very rich and complex set of

objects known as functions.

We close with a useful theorem about continuous functions:

THEOREM 2.24 Intermediate Value Theorem If f is continuous on the interval

[a, b] and d is between f(a) and f(b), then there is a number c in [a, b] such that f(c) = d.

This is most frequently used when d = 0.

EXAMPLE 2.25 Explain why the function f = x3 +3x2 + x− 2 has a root between 0

and 1.



54 Chapter 2 Instantaneous Rate of Change: The Derivative

By theorem 2.7, f is continuous. Since f(0) = −2 and f(1) = 3, and 0 is between −2

and 3, there is a c ∈ [0, 1] such that f(c) = 0.

This example also points the way to a simple method for approximating roots.

EXAMPLE 2.26 Approximate the root of the previous example to one decimal place.

If we compute f(0.1), f(0.2), and so on, we find that f(0.6) < 0 and f(0.7) > 0, so by

the Intermediate Value Theorem, f has a root between 0.6 and 0.7. Repeating the process

with f(0.61), f(0.62), and so on, we find that f(0.61) < 0 and f(0.62) > 0, so f has a root

between 0.61 and 0.62, and the root is 0.6 rounded to one decimal place.

Exercises 2.5.

1. Along the lines of Figure 2.3, for each part below sketch the graph of a function that is:

a. bounded, but not continuous.

b. differentiable and unbounded.

c. continuous at x = 0, not continuous at x = 1, and bounded.

d. differentiable everywhere except at x = −1, continuous, and unbounded.

2. Is f(x) = sin(x) a bounded function? If so, find the smallest M .

3. Is s(t) = 1/(1 + t2) a bounded function? If so, find the smallest M .

4. Is v(u) = 2 ln |u| a bounded function? If so, find the smallest M .

5. Consider the function

h(x) =

{

2x− 3, if x < 1
0, if x ≥ 1.

Show that it is continuous at the point x = 0. Is h a continuous function?

6. Approximate a root of f = x3 − 4x2 + 2x+ 2 to one decimal place.

7. Approximate a root of f = x4 + x3 − 5x+ 1 to one decimal place.


